Skip to main content

Clinical Applications of MRI in Radiotherapy Planning

  • Chapter
  • First Online:
MRI for Radiotherapy

Abstract

MRI has been adopted as part of the standard planning workflow of multiple tumor sites in radiotherapy. While computed tomography remains the standard of care for dose calculation, the use of MRI in radiotherapy planning allows for higher-quality delineation of target volumes and organs at risk. Increased accuracy of delineation, combined with the possibilities of functional imaging, has the potential to improve therapeutic ratios and enhance individualized approaches in radiotherapy planning. In this chapter, we review the applications and evidence for the use of MRI in radiotherapy planning in head and neck, central nervous system, prostate, gynecological, gastrointestinal, breast, and lung cancer sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aluwini S, van Rooij P, Hoogeman M, Kirkels W, Kolkman-Deurloo IK, Bangma C. Stereotactic body radiotherapy with a focal boost to the MRI-visible tumor as monotherapy for low- and intermediate-risk prostate cancer: early results. Radiat Oncol. 2013;8:84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aoyama H, Shirato H, Nishioka T, Hashimoto S, Tsuchiya K, Kagei K, et al. Magnetic resonance imaging system for three-dimensional conformal radiotherapy and its impact on gross tumor volume delineation of central nervous system tumors. Int J Radiat Oncol Biol Phys. 2001;50(3):821–7.

    Article  CAS  PubMed  Google Scholar 

  • Bauman G, Haider M, Van der Heide UA, Menard C. Boosting imaging defined dominant prostatic tumors: a systematic review. Radiother Oncol. 2013;107(3):274–81.

    Article  PubMed  Google Scholar 

  • Bedford JL, Convery HM, Hansen VN, Saran FH. Paraspinal volumetric modulated arc therapy. Br J Radiol. 2012;85(1016):1128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belliveau JG, Bauman GS, Tay KY, Ho D, Menon RS. Initial investigation into microbleeds and white matter signal changes following radiotherapy for low-grade and benign brain tumors using ultra-high-field MRI techniques. AJNR Am J Neuroradiol. 2017;38(12):2251–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bipat S, Glas AS, van der Velden J, Zwinderman AH, Bossuyt PM, Stoker J. Computed tomography and magnetic resonance imaging in staging of uterine cervical carcinoma: a systematic review. Gynecol Oncol. 2003;91(1):59–66.

    Article  PubMed  Google Scholar 

  • Brock KK, Dawson LA. Adaptive management of liver cancer radiotherapy. Semin Radiat Oncol. 2010;20(2):107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brouwer CL, Steenbakkers RJ, Bourhis J, Budach W, Grau C, Gregoire V, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother Oncol. 2015;117(1):83–90.

    Article  PubMed  Google Scholar 

  • Cassidy RJ, Yang X, Liu T, Thomas M, Nour SG, Jani AB. Neurovascular bundle-sparing radiotherapy for prostate cancer using MRI-CT registration: a dosimetric feasibility study. Med Dosim. 2016;41(4):339–43.

    Article  CAS  PubMed  Google Scholar 

  • Chandwani S, George PA, Azu M, Bandera EV, Ambrosone CB, Rhoads GG, et al. Role of preoperative magnetic resonance imaging in the surgical management of early-stage breast cancer. Ann Surg Oncol. 2014;21(11):3473–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang JH, Lim Joon D, Nguyen BT, Hiew CY, Esler S, Angus D, et al. MRI scans significantly change target coverage decisions in radical radiotherapy for prostate cancer. J Med Imaging Radiat Oncol. 2014;58(2):237–43.

    Article  PubMed  Google Scholar 

  • Chapman CH, Zhu T, Nazem-Zadeh M, Tao Y, Buchtel HA, Tsien CI, et al. Diffusion tensor imaging predicts cognitive function change following partial brain radiotherapy for low-grade and benign tumors. Radiother Oncol. 2016;120(2):234–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charaghvandi RK, van Asselen B, Philippens ME, Verkooijen HM, van Gils CH, van Diest PJ, et al. Redefining radiotherapy for early-stage breast cancer with single dose ablative treatment: a study protocol. BMC Cancer. 2017;17(1):181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi BI, Lee JM. Advancement in HCC imaging: diagnosis, staging and treatment efficacy assessments: imaging diagnosis and staging of hepatocellular carcinoma. J Hepatobiliary Pancreat Sci. 2010;17(4):369–73.

    Article  PubMed  Google Scholar 

  • Chung NN, Ting LL, Hsu WC, Lui LT, Wang PM. Impact of magnetic resonance imaging versus CT on nasopharyngeal carcinoma: primary tumor target delineation for radiotherapy. Head Neck. 2004;26(3):241–6.

    Article  PubMed  Google Scholar 

  • Cobben DC, de Boer HC, Tijssen RH, Rutten EG, van Vulpen M, Peerlings J, et al. Emerging role of MRI for radiation treatment planning in lung cancer. Technol Cancer Res Treat. 2016;15(6):47–60.

    Article  Google Scholar 

  • Cooper JS, Mukherji SK, Toledano AY, Beldon C, Schmalfuss IM, Amdur R, et al. An evaluation of the variability of tumor-shape definition derived by experienced observers from CT images of supraglottic carcinomas (ACRIN protocol 6658). Int J Radiat Oncol Biol Phys. 2007;67(4):972–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crane CH, Koay EJ. Solutions that enable ablative radiotherapy for large liver tumors: Fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance. Cancer. 2016;122(13):1974–86.

    Article  PubMed  Google Scholar 

  • De Meerleer G, Villeirs G, Bral S, Paelinck L, De Gersem W, Dekuyper P, et al. The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity-modulated radiotherapy. Radiother Oncol. 2005;75(3):325–33.

    Article  PubMed  Google Scholar 

  • Dimopoulos JC, Petrow P, Tanderup K, Petric P, Berger D, Kirisits C, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012;103(1):113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirix P, van Walle L, Deckers F, Van Mieghem F, Buelens G, Meijnders P, et al. Proposal for magnetic resonance imaging-guided salvage radiotherapy for prostate cancer. Acta Oncol (Stockh). 2017;56(1):27–32.

    Article  CAS  Google Scholar 

  • Dolezel M, Odrazka K, Vanasek J, Kohlova T, Kroulik T, Kudelka K, et al. MRI-based pre-planning in patients with cervical cancer treated with three-dimensional brachytherapy. Br J Radiol. 2011;84(1005):850–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyk P, Jiang N, Sun B, DeWees TA, Fowler KJ, Narra V, et al. Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging-guided high-dose-rate and positron emission tomography/computed tomography-guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(4):794–801.

    Article  PubMed  Google Scholar 

  • Einstein DB, Wessels B, Bangert B, Fu P, Nelson AD, Cohen M, et al. Phase II trial of radiosurgery to magnetic resonance spectroscopy-defined high-risk tumor volumes in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2012;84(3):668–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellingson BM, Bendszus M, Boxerman J, Barboriak D, Erickson BJ, Smits M, et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro-Oncology. 2015;17(9):1188–98.

    PubMed  PubMed Central  Google Scholar 

  • Fiorentino A, Caivano R, Pedicini P, Fusco V. Clinical target volume definition for glioblastoma radiotherapy planning: magnetic resonance imaging and computed tomography. Clin Transl Oncol. 2013;15(9):754–8.

    Article  CAS  PubMed  Google Scholar 

  • Fowler KJ, Brown JJ, Narra VR. Magnetic resonance imaging of focal liver lesions: approach to imaging diagnosis. Hepatology. 2011;54(6):2227–37.

    Article  PubMed  Google Scholar 

  • Frank SJ, Mourtada F, Crook J, Menard C. Use of magnetic resonance imaging in low-dose-rate and high-dose-rate prostate brachytherapy from diagnosis to treatment assessment: defining the knowledge gaps, technical challenges, and barriers to implementation. Brachytherapy. 2017;16(4):672–8.

    Article  CAS  PubMed  Google Scholar 

  • Freedman JN, Collins DJ, Bainbridge H, Rank CM, Nill S, Kachelriess M, et al. T2-Weighted 4D magnetic resonance imaging for application in magnetic resonance-guided radiotherapy treatment planning. Investig Radiol. 2017;52(10):563–73.

    Article  Google Scholar 

  • Giezen M, Kouwenhoven E, Scholten AN, Coerkamp EG, Heijenbrok M, Jansen WP, et al. Magnetic resonance imaging- versus computed tomography-based target volume delineation of the glandular breast tissue (clinical target volume breast) in breast-conserving therapy: an exploratory study. Int J Radiat Oncol Biol Phys. 2011;81(3):804–11.

    Article  PubMed  Google Scholar 

  • Giezen M, Kouwenhoven E, Scholten AN, Coerkamp EG, Heijenbrok M, Jansen WP, et al. MRI- versus CT-based volume delineation of lumpectomy cavity in supine position in breast-conserving therapy: an exploratory study. Int J Radiat Oncol Biol Phys. 2012;82(4):1332–40.

    Article  PubMed  Google Scholar 

  • Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32(34):3810–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Wang Q, Dong L, Jia Y, Hua C, Mi F, et al. Different imaging techniques for the detection of pelvic lymph nodes metastasis from gynecological malignancies: a systematic review and meta-analysis. Oncotarget. 2017;8(8):14107–25.

    Article  PubMed  Google Scholar 

  • Gwynne S, Mukherjee S, Webster R, Spezi E, Staffurth J, Coles B, et al. Imaging for target volume delineation in rectal cancer radiotherapy—a systematic review. Clin Oncol. 2012;24(1):52–63.

    Article  CAS  Google Scholar 

  • Heerkens HD, Hall WA, Li XA, Knechtges P, Dalah E, Paulson ES, et al. Recommendations for MRI-based contouring of gross tumor volume and organs at risk for radiation therapy of pancreatic cancer. Pract Radiat Oncol. 2017;7(2):126–36.

    Article  CAS  PubMed  Google Scholar 

  • van Heijst TC, van Asselen B, Pijnappel RM, Cloos-van Balen M, Lagendijk JJ, van den Bongard D, et al. MRI sequences for the detection of individual lymph nodes in regional breast radiotherapy planning. Br J Radiol. 2016;89(1063):20160072.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho JC, Allen PK, Bhosale PR, Rauch GM, Fuller CD, Mohamed AS, et al. Diffusion-weighted magnetic resonance imaging as a predictor of outcome in cervical cancer after chemoradiation. Int J Radiat Oncol Biol Phys. 2017;97(3):546–53.

    Article  PubMed  Google Scholar 

  • Hodge CW, Tome WA, Fain SB, Bentzen SM, Mehta MP. On the use of hyperpolarized helium MRI for conformal avoidance lung radiotherapy. Med Dosim. 2010;35(4):297–303.

    Article  CAS  PubMed  Google Scholar 

  • Horton JK, Blitzblau RC, Yoo S, Geradts J, Chang Z, Baker JA, et al. Preoperative single-fraction partial breast radiation therapy: a novel phase 1, dose-escalation protocol with radiation response biomarkers. Int J Radiat Oncol Biol Phys. 2015;92(4):846–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jastaniyah N, Yoshida K, Tanderup K, Lindegaard JC, Sturdza A, Kirisits C, et al. A volumetric analysis of GTVD and CTVHR as defined by the GEC ESTRO recommendations in FIGO stage IIB and IIIB cervical cancer patients treated with IGABT in a prospective multicentric trial (EMBRACE). Radiother Oncol. 2016;120(3):404–11.

    Article  PubMed  Google Scholar 

  • Jena R, Price SJ, Baker C, Jefferies SJ, Pickard JD, Gillard JH, et al. Diffusion tensor imaging: possible implications for radiotherapy treatment planning of patients with high-grade glioma. Clin Oncol. 2005;17(8):581–90.

    Article  CAS  Google Scholar 

  • Jolicoeur M, Racine ML, Trop I, Hathout L, Nguyen D, Derashodian T, et al. Localization of the surgical bed using supine magnetic resonance and computed tomography scan fusion for planification of breast interstitial brachytherapy. Radiother Oncol. 2011;100(3):480–4.

    Article  PubMed  Google Scholar 

  • Kato H, Kanematsu M, Watanabe H, Mizuta K, Aoki M. Metastatic retropharyngeal lymph nodes: comparison of CT and MR imaging for diagnostic accuracy. Eur J Radiol. 2014;83(7):1157–62.

    Article  PubMed  Google Scholar 

  • Kerkhof EM, van der Put RW, Raaymakers BW, van der Heide UA, Jurgenliemk-Schulz IM, Lagendijk JJ. Intrafraction motion in patients with cervical cancer: the benefit of soft tissue registration using MRI. Radiother Oncol. 2009;93(1):115–21.

    Article  PubMed  Google Scholar 

  • King AD, Thoeny HC. Functional MRI for the prediction of treatment response in head and neck squamous cell carcinoma: potential and limitations. Cancer Imaging. 2016;16(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirby AM, Yarnold JR, Evans PM, Morgan VA, Schmidt MA, Scurr ED, et al. Tumor bed delineation for partial breast and breast boost radiotherapy planned in the prone position: what does MRI add to X-ray CT localization of titanium clips placed in the excision cavity wall? Int J Radiat Oncol Biol Phys. 2009;74(4):1276–82.

    Article  PubMed  Google Scholar 

  • Klinke T, Daboul A, Maron J, Gredes T, Puls R, Jaghsi A, et al. Artifacts in magnetic resonance imaging and computed tomography caused by dental materials. PLoS One. 2012;7(2):e31766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koay EJ, Hall W, Park PC, Erickson B, Herman JM. The role of imaging in the clinical practice of radiation oncology for pancreatic cancer. Abdom Radiol (NY). 2018;43(2):393–403.

    Article  Google Scholar 

  • Lagendijk JJ, Raaymakers BW, Van den Berg CA, Moerland MA, Philippens ME, van Vulpen M. MR guidance in radiotherapy. Phys Med Biol. 2014;59(21):R349–69.

    Article  PubMed  Google Scholar 

  • Lambrecht M, Vandecaveye V, De Keyzer F, Roels S, Penninckx F, Van Cutsem E, et al. Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: preliminary results. Int J Radiat Oncol Biol Phys. 2012;82(2):863–70.

    Article  PubMed  Google Scholar 

  • Law BK, King AD, Bhatia KS, Ahuja AT, Kam MK, Ma BB, et al. Diffusion-weighted imaging of nasopharyngeal carcinoma: can pretreatment DWI predict local failure based on long-term outcome? AJNR Am J Neuroradiol. 2016;37(9):1706–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim K, Small W Jr, Portelance L, Creutzberg C, Jurgenliemk-Schulz IM, Mundt A, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–55.

    Article  PubMed  Google Scholar 

  • Lindegaard JC, Fokdal LU, Nielsen SK, Juul-Christensen J, Tanderup K. MRI-guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective. Acta Oncol (Stockh). 2013;52(7):1510–9.

    Article  CAS  Google Scholar 

  • Lips IM, van der Heide UA, Haustermans K, van Lin EN, Pos F, Franken SP, et al. Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial. Trials. 2011;12:255.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu WC, Schulder M, Narra V, Kalnin AJ, Cathcart C, Jacobs A, et al. Functional magnetic resonance imaging aided radiation treatment planning. Med Phys. 2000;27(7):1563–72.

    Article  CAS  PubMed  Google Scholar 

  • Loimu V, Seppala T, Kapanen M, Tuomikoski L, Nurmi H, Makitie A, et al. Diffusion-weighted magnetic resonance imaging for evaluation of salivary gland function in head and neck cancer patients treated with intensity-modulated radiotherapy. Radiother Oncol. 2017;122(2):178–84.

    Article  PubMed  Google Scholar 

  • Menard C, Susil RC, Choyke P, Gustafson GS, Kammerer W, Ning H, et al. MRI-guided HDR prostate brachytherapy in standard 1.5T scanner. Int J Radiat Oncol Biol Phys. 2004;59(5):1414–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Menard C, Paulson E, Nyholm T, McLaughlin P, Liney G, Dirix P, et al. Role of prostate MR imaging in radiation oncology. Radiol Clin N Am. 2018;56(2):319–25.

    Article  PubMed  Google Scholar 

  • Miller GW, Mugler JP III, Sa RC, Altes TA, Prisk GK, Hopkins SR. Advances in functional and structural imaging of the human lung using proton MRI. NMR Biomed. 2014;27(12):1542–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milosevic M, Voruganti S, Blend R, Alasti H, Warde P, McLean M, et al. Magnetic resonance imaging (MRI) for localization of the prostatic apex: comparison to computed tomography (CT) and urethrography. Radiother Oncol. 1998;47(3):277–84.

    Article  CAS  PubMed  Google Scholar 

  • Mizowaki T, Araki N, Nagata Y, Negoro Y, Aoki T, Hiraoka M. The use of a permanent magnetic resonance imaging system for radiotherapy treatment planning of bone metastases. Int J Radiat Oncol Biol Phys. 2001;49(2):605–11.

    Article  CAS  PubMed  Google Scholar 

  • Nagai A, Shibamoto Y, Mori Y, Hashizume C, Hagiwara M, Kobayashi T. Increases in the number of brain metastases detected at frame-fixed, thin-slice MRI for gamma knife surgery planning. Neuro-Oncology. 2010;12(11):1187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park W, Park YJ, Huh SJ, Kim BG, Bae DS, Lee J, et al. The usefulness of MRI and PET imaging for the detection of parametrial involvement and lymph node metastasis in patients with cervical cancer. Jpn J Clin Oncol. 2005;35(5):260–4.

    Article  PubMed  Google Scholar 

  • Pech M, Mohnike K, Wieners G, Bialek E, Dudeck O, Seidensticker M, et al. Radiotherapy of liver metastases. Comparison of target volumes and dose-volume histograms employing CT- or MRI-based treatment planning. Strahlenther Onkol. 2008;184(5):256–61.

    Article  PubMed  Google Scholar 

  • Peerlings J, Troost EG, Nelemans PJ, Cobben DC, de Boer JC, Hoffmann AL, et al. The diagnostic value of MR imaging in determining the lymph node status of patients with non-small cell lung cancer: a meta-analysis. Radiology. 2016;281(1):86–98.

    Article  PubMed  Google Scholar 

  • Perrone A, Guerrisi P, Izzo L, D’Angeli I, Sassi S, Mele LL, et al. Diffusion-weighted MRI in cervical lymph nodes: differentiation between benign and malignant lesions. Eur J Radiol. 2011;77(2):281–6.

    Article  PubMed  Google Scholar 

  • Pham TT, Liney G, Wong K, Rai R, Lee M, Moses D, et al. Study protocol: multi-parametric magnetic resonance imaging for therapeutic response prediction in rectal cancer. BMC Cancer. 2017;17(1):465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potter R, Tanderup K, Kirisits C, de Leeuw A, Kirchheiner K, Nout R, et al. The EMBRACE II study: the outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies. Clin Transl Radiat Oncol. 2018;9:48–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poulin E, Boudam K, Pinter C, Kadoury S, Lasso A, Fichtinger G, et al. Validation of MRI to TRUS registration for high-dose-rate prostate brachytherapy. Brachytherapy. 2018;17(2):283–90.

    Article  PubMed  Google Scholar 

  • Pramanik PP, Parmar HA, Mammoser AG, Junck LR, Kim MM, Tsien CI, et al. Hypercellularity components of glioblastoma identified by high b-value diffusion-weighted imaging. Int J Radiat Oncol Biol Phys. 2015;92(4):811–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prestwich RJ, Sykes J, Carey B, Sen M, Dyker KE, Scarsbrook AF. Improving target definition for head and neck radiotherapy: a place for magnetic resonance imaging and 18-fluoride fluorodeoxyglucose positron emission tomography? Clin Oncol. 2012;24(8):577–89.

    Article  CAS  Google Scholar 

  • Ryu S, Pugh SL, Gerszten PC, Yin FF, Timmerman RD, Hitchcock YJ, et al. RTOG 0631 phase 2/3 study of image guided stereotactic radiosurgery for localized (1–3) spine metastases: phase 2 results. Pract Radiat Oncol. 2014;4(2):76–81.

    Article  PubMed  Google Scholar 

  • Saisho H, Yamaguchi T. Diagnostic imaging for pancreatic cancer: computed tomography, magnetic resonance imaging, and positron emission tomography. Pancreas. 2004;28(3):273–8.

    Article  PubMed  Google Scholar 

  • Salembier C, Villeirs G, De Bari B, Hoskin P, Pieters BR, Van Vulpen M, et al. ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer. Radiother Oncol. 2018;127(1):49–61.

    Article  PubMed  Google Scholar 

  • Sander L, Langkilde NC, Holmberg M, Carl J. MRI target delineation may reduce long-term toxicity after prostate radiotherapy. Acta Oncol (Stockh). 2014;53(6):809–14.

    Article  Google Scholar 

  • Sardanelli F, Giuseppetti GM, Panizza P, Bazzocchi M, Fausto A, Simonetti G, et al. Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in fatty and dense breasts using the whole-breast pathologic examination as a gold standard. AJR Am J Roentgenol. 2004;183(4):1149–57.

    Article  PubMed  Google Scholar 

  • Scoccianti S, Detti B, Gadda D, Greto D, Furfaro I, Meacci F, et al. Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist’s guide for delineation in everyday practice. Radiother Oncol. 2015;114(2):230–8.

    Article  PubMed  Google Scholar 

  • Spratt DE, Arevalo-Perez J, Leeman JE, Gerber NK, Folkert M, Taunk NK, et al. Early magnetic resonance imaging biomarkers to predict local control after high dose stereotactic body radiotherapy for patients with sarcoma spine metastases. Spine J. 2016;16(3):291–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stall B, Zach L, Ning H, Ondos J, Arora B, Shankavaram U, et al. Comparison of T2 and FLAIR imaging for target delineation in high grade gliomas. Radiat Oncol. 2010;5:5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steenbakkers RJ, Deurloo KE, Nowak PJ, Lebesque JV, van Herk M, Rasch CR. Reduction of dose delivered to the rectum and bulb of the penis using MRI delineation for radiotherapy of the prostate. Int J Radiat Oncol Biol Phys. 2003;57(5):1269–79.

    Article  PubMed  Google Scholar 

  • Stemkens B, Tijssen RH, de Senneville BD, Heerkens HD, van Vulpen M, Lagendijk JJ, et al. Optimizing 4-dimensional magnetic resonance imaging data sampling for respiratory motion analysis of pancreatic tumors. Int J Radiat Oncol Biol Phys. 2015;91(3):571–8.

    Article  PubMed  Google Scholar 

  • Straathof CS, de Bruin HG, Dippel DW, Vecht CJ. The diagnostic accuracy of magnetic resonance imaging and cerebrospinal fluid cytology in leptomeningeal metastasis. J Neurol. 1999;246(9):810–4.

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Li B, Li CJ, Li Y, Su F, Gao QH, et al. Computed tomography versus magnetic resonance imaging for diagnosing cervical lymph node metastasis of head and neck cancer: a systematic review and meta-analysis. OncoTargets Ther. 2015;8:1291–313.

    CAS  Google Scholar 

  • Tan J, Lim Joon D, Fitt G, Wada M, Lim Joon M, Mercuri A, et al. The utility of multimodality imaging with CT and MRI in defining rectal tumour volumes for radiotherapy treatment planning: a pilot study. J Med Imaging Radiat Oncol. 2010;54(6):562–8.

    Article  CAS  PubMed  Google Scholar 

  • Tanderup K, Nielsen SK, Nyvang GB, Pedersen EM, Rohl L, Aagaard T, et al. From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother Oncol. 2010;94(2):173–80.

    Article  PubMed  Google Scholar 

  • Tanderup K, Viswanathan AN, Kirisits C, Frank SJ. Magnetic resonance image guided brachytherapy. Semin Radiat Oncol. 2014;24(3):181–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tseng CL, Eppinga W, Charest-Morin R, Soliman H, Myrehaug S, Maralani PJ, et al. Spine stereotactic body radiotherapy: indications, outcomes, and points of caution. Global Spine J. 2017;7(2):179–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Villeirs GM, De Meerleer GO. Magnetic resonance imaging (MRI) anatomy of the prostate and application of MRI in radiotherapy planning. Eur J Radiol. 2007;63(3):361–8.

    Article  PubMed  Google Scholar 

  • Villeirs GM, Van Vaerenbergh K, Vakaet L, Bral S, Claus F, De Neve WJ, et al. Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer. Strahlenther Onkol. 2005;181(7):424–30.

    Article  PubMed  Google Scholar 

  • Viswanathan AN, Dimopoulos J, Kirisits C, Berger D, Potter R. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys. 2007;68(2):491–8.

    Article  PubMed  Google Scholar 

  • Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging – reporting and data system: 2015, version 2. Eur Urol. 2016;69(1):16–40.

    Article  PubMed  Google Scholar 

  • White NS, McDonald CR, Farid N, Kuperman JM, Kesari S, Dale AM. Improved conspicuity and delineation of high-grade primary and metastatic brain tumors using “restriction spectrum imaging”: quantitative comparison with high B-value DWI and ADC. AJNR Am J Neuroradiol. 2013;34(5):958–64, s1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SX, Han PH, Zhang GQ, Wang RH, Ge YB, Ren ZG, et al. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma. Biomed Mater Eng. 2014;24(1):1117–24.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahig, H., Koay, E., Barkati, M., Fuller, D.C., Menard, C. (2019). Clinical Applications of MRI in Radiotherapy Planning. In: Liney, G., van der Heide, U. (eds) MRI for Radiotherapy. Springer, Cham. https://doi.org/10.1007/978-3-030-14442-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14442-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14441-8

  • Online ISBN: 978-3-030-14442-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics