Advertisement

Diagnostic Imaging Considerations in Damage Control Ophthalmology

  • Aaron M. BettsEmail author
  • John L. Ritter
Chapter
  • 125 Downloads

Abstract

Whether treating trauma patients at a large full-scope trauma center or caring for patients in austere environments, the gold standard for evaluating patients with sight-threatening injuries is clinical ophthalmologic examination. However, medical imaging can be an extremely valuable adjunct in the assessment of eye disease and injury. Non-invasive imaging can offer evaluation of deeper ocular structures when ocular media opacities obscure ophthalmoscopic visualization. Imaging can also be extremely useful in the evaluation for ocular or orbital retained foreign bodies. Imaging is critical in evaluating for the presence and extent of bony orbital injury, as well as concomitant facial, calvarial, or intracranial injury. While medical imaging can play an important role in damage control ophthalmology, the portability, availability, and cost are highly variable. The availability of imaging modalities should be considered when planning humanitarian missions and combat operations, as the availability of imaging can impact patient care and transport decisions.

Keywords

Diagnostic imaging Ultrasound Radiography Computed tomography Magnetic resonance imaging 

References

  1. 1.
    Bushberg JT, Seibert JA, Leidholdt EM, Boone JM. The essential physics of medical imaging. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2002.Google Scholar
  2. 2.
    Shiraki N, Wakabayashi T, Sato T, Sakaguchi H, Nishida K. Intraoperative B-scan ultrasonography and pars plana vitrectomy for severe open globe injury with hemorrhagic retinal and choroidal detachment. Graefes Arch Clin Exp Ophthalmol. 2017;255(11):2287–91.CrossRefGoogle Scholar
  3. 3.
    Frasure SE, Saul T, Lewiss RE. Bedside ultrasound diagnosis of vitreous hemorrhage and traumatic lens dislocation. Am J Emerg Med. 2013;31(6):1002 e1–2.CrossRefGoogle Scholar
  4. 4.
    Kwong JS, Munk PL, Lin DT, Vellet AD, Levin M, Buckley AR. Real-time sonography in ocular trauma. AJR Am J Roentgenol. 1992;158(1):179–82.CrossRefGoogle Scholar
  5. 5.
    McNicholas MM, Brophy DP, Power WJ, Griffin JF. Ocular trauma: evaluation with US. Radiology. 1995;195(2):423–7.CrossRefGoogle Scholar
  6. 6.
    Scott IU, Smiddy WE, Feuer WJ, Ehlies FJ. The impact of echography on evaluation and management of posterior segment disorders. Am J Ophthalmol. 2004;137(1):24–9.CrossRefGoogle Scholar
  7. 7.
    Sung EK, Nadgir RN, Fujita A, Siegel C, Ghafouri RH, Traband A, et al. Injuries of the globe: what can the radiologist offer? Radiographics. 2014;34(3):764–76.CrossRefGoogle Scholar
  8. 8.
    Vrablik ME, Snead GR, Minnigan HJ, Kirschner JM, Emmett TW, Seupaul RA. The diagnostic accuracy of bedside ocular ultrasonography for the diagnosis of retinal detachment: a systematic review and meta-analysis. Ann Emerg Med. 2015;65(2):199–203. e1CrossRefGoogle Scholar
  9. 9.
    Yoonessi R, Hussain A, Jang TB. Bedside ocular ultrasound for the detection of retinal detachment in the emergency department. Acad Emerg Med. 2010;17(9):913–7.CrossRefGoogle Scholar
  10. 10.
    Boniface KS, Aalam A, Salimian M, Liu YT, Shokoohi H. Trauma-induced bilateral ectopia lentis diagnosed with point-of-care ultrasound. J Emerg Med. 2015;48(6):e135–7.CrossRefGoogle Scholar
  11. 11.
    Eken C, Yuruktumen A, Yildiz G. Ultrasound diagnosis of traumatic lens dislocation. J Emerg Med. 2013;44(1):e109–10.CrossRefGoogle Scholar
  12. 12.
    Tabatabaei A, Hasanlou N, Kheirkhah A, Mansouri M, Faghihi H, Jafari H, et al. Accuracy of 3 imaging modalities for evaluation of the posterior lens capsule in traumatic cataract. J Cataract Refract Surg. 2014;40(7):1092–6.CrossRefGoogle Scholar
  13. 13.
    Kniess CK, Fong TC, Reilly AJ, Laoteppitaks C. Early detection of traumatic retrobulbar hemorrhage using bedside ocular ultrasound. J Emerg Med. 2015;49(1):58–60.CrossRefGoogle Scholar
  14. 14.
    Moreno L, Velasquez LF, Restrepo CA, Paulo JD, Donado J, Munoz ML, et al. Ocular trauma from land mines among soldiers treated at a University Hospital in Medellin, Colombia. Colomb Med (Cali). 2013;44(4):218–23.Google Scholar
  15. 15.
    Ritchie JV, Horne ST, Perry J, Gay D. Ultrasound triage of ocular blast injury in the military emergency department. Mil Med. 2012;177(2):174–8.CrossRefGoogle Scholar
  16. 16.
    Debiec M, Frazier T, Colyer M, Nelson M. Inappropriate use of ultrasound in ocular trauma. Mil Med. 2012;177(12):v–vi; author reply vi.PubMedGoogle Scholar
  17. 17.
    Fielding JA. The assessment of ocular injury by ultrasound. Clin Radiol. 2004;59(4):301–12.CrossRefGoogle Scholar
  18. 18.
    Modjtahedi BS, Rong A, Bobinski M, McGahan J, Morse LS. Imaging characteristics of intraocular foreign bodies: a comparative study of plain film X-ray, computed tomography, ultrasound, and magnetic resonance imaging. Retina. 2015;35(1):95–104.CrossRefGoogle Scholar
  19. 19.
    Shiver SA, Lyon M, Blaivas M. Detection of metallic ocular foreign bodies with handheld sonography in a porcine model. J Ultrasound Med. 2005;24(10):1341–6.CrossRefGoogle Scholar
  20. 20.
    Kennedy TA, Corey AS, Policeni B, Agarwal V, Burns J, Harvey HB, et al. American College of Radiology Appropriateness Criteria: oribts, vision and vision loss. 2017. Available from: https://acsearch.acr.org/docs/69486/Narrative/.
  21. 21.
    Saeed A, Cassidy L, Malone DE, Beatty S. Plain X-ray and computed tomography of the orbit in cases and suspected cases of intraocular foreign body. Eye (Lond). 2008;22(11):1373–7.CrossRefGoogle Scholar
  22. 22.
    Emergency War Surgery. Fourth United States Revision ed. Fort Sam Houston: Borden Institute; 2013.Google Scholar
  23. 23.
    Mester V, Kuhn F. Intraocular foreign bodies. Ophthalmol Clin N Am. 2002;15(2):235–42.CrossRefGoogle Scholar
  24. 24.
    Pinto A, Brunese L, Daniele S, Faggian A, Guarnieri G, Muto M, et al. Role of computed tomography in the assessment of intraorbital foreign bodies. Semin Ultrasound CT MR. 2012;33(5):392–5.CrossRefGoogle Scholar
  25. 25.
    Duker JS, Fischer DH. Occult plastic intraocular foreign body. Ophthalmic Surg. 1989;20(3):169–70.PubMedGoogle Scholar
  26. 26.
    Arnaiz J, Marco de Lucas E, Piedra T, Torres M, Blanco G, Gonzalez-Mandly A, et al. Intralenticular intraocular foreign body after stone impact: CT and US findings. Emerg Radiol. 2006;12(5):237–9.CrossRefGoogle Scholar
  27. 27.
    Lakits A, Prokesch R, Scholda C, Bankier A. Orbital helical computed tomography in the diagnosis and management of eye trauma. Ophthalmology. 1999;106(12):2330–5.CrossRefGoogle Scholar
  28. 28.
    Tas S, Top H. Intraorbital wooden foreign body: clinical analysis of 32 cases, a 10-year experience. Ulus Travma Acil Cerrahi Derg. 2014;20(1):51–5.CrossRefGoogle Scholar
  29. 29.
    Dunkin JM, Crum AV, Swanger RS, Bokhari SA. Globe trauma. Semin Ultrasound CT MR. 2011;32(1):51–6.CrossRefGoogle Scholar
  30. 30.
    Joseph DP, Pieramici DJ, Beauchamp NJ Jr. Computed tomography in the diagnosis and prognosis of open-globe injuries. Ophthalmology. 2000;107(10):1899–906.CrossRefGoogle Scholar
  31. 31.
    Sevel D, Krausz H, Ponder T, Centeno R. Value of computed tomography for the diagnosis of a ruptured eye. J Comput Assist Tomogr. 1983;7(5):870–5.CrossRefGoogle Scholar
  32. 32.
    Arey ML, Mootha VV, Whittemore AR, Chason DP, Blomquist PH. Computed tomography in the diagnosis of occult open-globe injuries. Ophthalmology. 2007;114(8):1448–52.CrossRefGoogle Scholar
  33. 33.
    Chou C, Lou YT, Hanna E, Huang SH, Lee SS, Lai HT, et al. Diagnostic performance of isolated orbital CT scan for assessment of globe rupture in acute blunt facial trauma. Injury. 2016;47(5):1035–41.CrossRefGoogle Scholar
  34. 34.
    Hoffstetter P, Schreyer AG, Schreyer CI, Jung EM, Heiss P, Zorger N, et al. Multidetector CT (MD-CT) in the diagnosis of uncertain open globe injuries. Rofo. 2010;182(2):151–4.CrossRefGoogle Scholar
  35. 35.
    Yuan WH, Hsu HC, Cheng HC, Guo WY, Teng MM, Chen SJ, et al. CT of globe rupture: analysis and frequency of findings. AJR Am J Roentgenol. 2014;202(5):1100–7.CrossRefGoogle Scholar
  36. 36.
    Gad K, Singman EL, Nadgir RN, Yousem DM, Pillai JJ. CT in the evaluation of acute injuries of the anterior eye segment. AJR Am J Roentgenol. 2017;209(6):1353–9.CrossRefGoogle Scholar
  37. 37.
    Westbrook CW, Roth CJ, Talbot J. MRI in practice. 4th ed. West Sussex, : Wiley-Blackwell; 2011.Google Scholar
  38. 38.
    First mobile MRI systems to be sent to Afghanistan theater. 2011. Available from: http://www.navy.mil/submit/display.asp?story_id=60894.
  39. 39.
    Afghanistan theater receives state-of-the-art MRI systems. 2011. Available from: http://www.navy.mil/submit/display.asp?story_id=63216.
  40. 40.
    Zoroya G. MRI machines for treating soldiers pulled from war zone. 2014. Available from: https://www.usatoday.com/story/news/nation/2014/01/18/tbi-brain-mri-mullen-blast/4489913/.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Brooke Army Medical Center, Department of RadiologyFort Sam HoustonUSA

Personalised recommendations