Skip to main content

Ontologies for Data Science: On Its Application to Data Pipelines

  • Conference paper
  • First Online:
Metadata and Semantic Research (MTSR 2018)

Abstract

Ontologies are usually applied to drive intelligent applications and also as a resource for integrating or extracting information, as in the case of Natural Language Processing (NLP) tasks. Further, ontologies as the Gene Ontology (GO) are used as an artifact for very specific research aims. However, the value of ontologies for data analysis tasks may also go beyond these uses and span supporting the reuse and composition of data acquisition, integration and fusion code. This requires that both data and code artifacts support meta-descriptions using shared conceptualizations. In this paper, we discuss the different concerns in semantically describing data pipelines as a key reusable artifact that could be retrieved, compared and reused with a degree of automation if semantically consistent descriptions are provided. Concretely, we propose attaching semantic descriptions for data and analytic transformations to current backend-independent distributed processing frameworks as Apache Beam, as these already abstract out the specificity of supporting execution engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://beam.apache.org/.

  2. 2.

    https://apex.apache.org/.

  3. 3.

    https://flink.apache.org/.

  4. 4.

    https://spark.apache.org/.

  5. 5.

    https://taverna.incubator.apache.org/.

  6. 6.

    Turnover in industry - consumer durables, available at https://data.europa.eu/euodp/es/data/dataset/Z3YE842s0KutFv7stmNmDw/resource/51c01810-f40a-48d6-b178-c7701a01f821.

  7. 7.

    “Index of turnover-Total”, http://dd.eionet.europa.eu/vocabulary/eurostat/indic_bt/TOVT.

  8. 8.

    https://github.com/NCEAS/oboe.

  9. 9.

    At the time of this writing, Bean is mainly used as a data transformation framework not including distributed machine learning algorithms, for example, TensorFlow Extended (TFX) [4] is built on top of Beam but there are not algorithms available as aggregate transformations.

  10. 10.

    The transformations are just examples, they are not intended as analytics with real practical value.

  11. 11.

    This would require integrating a parser of that language for checking and manipulation, that could include exploiting semantic mappings.

References

  1. Akidau, T., et al.: The dataflow model. Proc. VLDB Endow. 8(12), 1792–1803 (2015)

    Article  Google Scholar 

  2. Barker, A., van Hemert, J.: Scientific workflow: a survey and research directions. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 746–753. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68111-3_78

    Chapter  Google Scholar 

  3. Bas̆karada, S., Koronios, A.: Unicorn data scientist: the rarest of breeds. Program 51(1), 65–74 (2017)

    Article  Google Scholar 

  4. Baylor, D., Breck, E., Cheng, H.T., et al.: TFX: a tensorflow-based production-scale machine learning platform. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1387–1395. ACM (2017)

    Google Scholar 

  5. Bowers, S., Ludäscher, B.: An ontology-driven framework for data transformation in scientific workflows. In: Rahm, E. (ed.) DILS. LNCS, vol. 2994, pp. 1–16. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24745-6_1

    Chapter  Google Scholar 

  6. Buitinck, L., Louppe, G., Blondel, M., et al.: API design for machine learning software: experiences from the scikit-learn project. arXiv preprint arXiv:1309.0238 (2013)

  7. Capadisli, S., Auer, S., Ngonga Ngomo, A.C.: Linked SDMX data. Semantic Web 6(2), 105–112 (2015)

    Article  Google Scholar 

  8. Figuerola, C.G., Groves, T.: Analysing the potential of Wikipedia for science education using automatic organization of knowledge. Program 51(4), 373–386 (2017)

    Article  Google Scholar 

  9. Guazzelli, A., Zeller, M., Lin, W.C., Williams, G.: PMML: an open standard for sharing models. R J. 1(1), 60–65 (2009)

    Google Scholar 

  10. Hajra, A., Tochtermann, K.: Linking science: approaches for linking scientific publications across different LOD repositories. Int. J. Metadata Semant. Ontol. 12(2–3), 124–141 (2017)

    Article  Google Scholar 

  11. Karimova, Y., Castro, J.A., Silva, J.R.D., Pereira, N., Rodrigues, J., Ribeiro, C.: Description+ annotation: semantic data publication workflow with Dendro and B2NOTE. Int. J. Metadata Semant. Ontol. 12(4), 182–194 (2017)

    Article  Google Scholar 

  12. Lanza, J., et al.: Managing large amounts of data generated by a smart city internet of things deployment. Int. J. Semantic Web Inf. Syst. (IJSWIS) 12(4), 22–42 (2016)

    Article  Google Scholar 

  13. Lytras, M.D., Raghavan, V., Damiani, E.: Big data and data analytics research: from metaphors to value space for collective wisdom in human decision making and smart machines. Int. J. Semant. Web Inf. Syst. (IJSWIS) 13(1), 1–10 (2017)

    Article  Google Scholar 

  14. McPhillips, T., Bowers, S., Zinn, D., Ludäscher, B.: Scientific workflow design for mere mortals. Future Gener. Comput. Syst. 25(5), 541–551 (2009)

    Article  Google Scholar 

  15. Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., Villa, F.: An ontology for describing and synthesizing ecological observation data. Ecol. Inform. 2(3), 279–296 (2007)

    Article  Google Scholar 

  16. Meng, X., Bradley, J., Yavuz, B., et al.: MLlib: machine learning in Apache Spark. J. Mach. Learn. Res. 17(1), 1235–1241 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Patterson, E., Baldini, I., Mojsilovic, A., Varshney, K.R.: Semantic representation of data science programs. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), pp. 5847–5849 (2018)

    Google Scholar 

  18. Patterson, E., Baldini, I., Mojsilovic, A., Varshney, K.R.: Teaching machines to understand data science code by semantic enrichment of dataflow graphs. arXiv preprint arXiv:1807.05691 (2018)

  19. Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: a large ontology for the semantic web and its applications. In: Working Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, vol. 28, pp. 7–10 (2002)

    Google Scholar 

  20. Pen̄a, O., Aguilera, U., López-de-Ipin̄a, D.: Exploring LOD through metadata extraction and data-driven visualizations. Program 50(3), 270–287 (2016)

    Article  Google Scholar 

  21. Schildgen, J., Deßloch, S.: NotaQL is not a query language! it’s for data transformation on wide-column stores. In: Maneth, S. (ed.) BICOD 2015. LNCS, vol. 9147, pp. 139–151. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20424-6_14

    Chapter  Google Scholar 

  22. Sicilia, M.A., García-Barriocanal, E., Sánchez-Alonso, S., Rodríguez-García, D.: Ontologies of engineering knowledge: general structure and the case of software engineering. Knowl. Eng. Rev. 24(3), 309–326 (2009)

    Article  Google Scholar 

  23. Wu, D., Zhu, L., Xu, X., Sakr, S., Lu, Q., Sun, D.: A pipeline framework for heterogeneous execution environment of big data processing. IEEE Softw. 33(2), 60–67 (2016)

    Article  Google Scholar 

  24. Zhang, X., Li, K., Zhao, C., Pan, D.: A survey on units ontologies: architecture, comparison and reuse. Program 51(2), 193–213 (2017)

    Article  Google Scholar 

  25. Zheng, J., et al.: The Ontology of Biological and Clinical Statistics (OBCS) for standardized and reproducible statistical analysis. J. Biomed. Semant. 7(1), 53 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel-Ángel Sicilia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sicilia, MÁ., García-Barriocanal, E., Sánchez-Alonso, S., Mora-Cantallops, M., Cuadrado, JJ. (2019). Ontologies for Data Science: On Its Application to Data Pipelines. In: Garoufallou, E., Sartori, F., Siatri, R., Zervas, M. (eds) Metadata and Semantic Research. MTSR 2018. Communications in Computer and Information Science, vol 846. Springer, Cham. https://doi.org/10.1007/978-3-030-14401-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14401-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14400-5

  • Online ISBN: 978-3-030-14401-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics