Advertisement

Urothelial Cancer Stem Cell Heterogeneity

  • Michaela Kripnerova
  • Hamendra Singh Parmar
  • Martin Pesta
  • Michaela Kohoutova
  • Jitka Kuncova
  • Karel Drbal
  • Marie Rajtmajerova
  • Jiri HatinaEmail author
Chapter
  • 915 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1139)

Abstract

Urothelial carcinoma is a tumor type featuring pronounced intertumoral heterogeneity and a high mutational and epigenetic load. The two major histopathological urothelial carcinoma types – the non-muscle-invasive and muscle-invasive urothelial carcinoma – markedly differ in terms of their respective typical mutational profiles and also by their probable cells of origin, that is, a urothelial basal cell for muscle-invasive carcinomas and a urothelial intermediate cell for at least a large part of non-muscle-invasive carcinomas. Both non-muscle-invasive and muscle-invasive urothelial carcinomas can be further classified into discrete intrinsic subtypes based on their typical transcriptomic profiles. Urothelial carcinogenesis shows a number of parallels to a urothelial regenerative response. Both of these processes seem to be dominated by specific stem cell populations. In the last years, the nature and location of urothelial stem cell(s) have been subject to many controversies, which now seem to be settled down, favoring the existence of a largely single urothelial stem cell type located among basal cells. Basal cell markers have also been amply used to identify urothelial carcinoma stem cells, especially in muscle-invasive disease, but they proved useful even in some non-muscle-invasive tumors. Analyses on molecular nature of urothelial carcinoma stem cells performed till now point to their great heterogeneity, both during the tumor development and upon intertumoral comparison, sexual dimorphism providing a special example of the latter. Moreover, urothelial cancer stem cells are endowed with intrinsic plasticity, whereby they can modulate their stemness in relation to other tumor-related traits, especially motility and invasiveness. Such transitional modulations suggest underlying epigenetic mechanisms and, even within this context, inter- and intratumoral heterogeneity becomes apparent. Multiple molecular aspects of urothelial cancer stem cell biology markedly influence therapeutic response, implying their knowledge as a prerequisite to improved therapies of this disease. At the same time, the notion of urothelial cancer stem cell heterogeneity implies that this therapeutic benefit would be most probably and most efficiently achieved within the context of individualized antitumor therapy.

Keywords

Urothelium Urothelial stem cells Urothelial regenerative response Lineage-tracing Lineage-depletion Urothelial carcinoma Urothelial carcinoma heterogeneity Non-muscle-invasive bladder cancer Muscle-invasive bladder cancer Intrinsic subtypes Urothelial carcinoma sexual dimorphism Urothelial carcinoma stem cells Stemness signaling pathway Sonic hedgehog Wnt/β-catenin pathway SOX-2 STAT-3 COX-2 YAP-1 Epithelial-mesenchymal transition Epigenetic plasticity DNMT-1 

Notes

Acknowledgments

The original studies cited are supported by the Charles University Research Fund (Progres Q39), National Sustainability Program I (NPUI) Nr. LO1503 provided by the Ministry of Education, Youth and Sports of the Czech Republic (M.Kr., M.Ko, and J.K) and by Charles University Specific Student Research Projects Nr. 260394/2017, Nr. 260393/2017 (J.H.,M.K., M.P., J.K.)

References

  1. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F (2017) Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 71(1):96–108PubMedCrossRefGoogle Scholar
  2. Balsara ZR, Li X (2017) Sleeping beauty: awakening urothelium from its slumber. Am J Physiol Renal Physiol 312(4):F732–F743PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barth I, Schneider U, Grimm T, Karl A, Horst D, Gaisa NT, Knüchel R, Garczyk S (2018) Progression of urothelial carcinoma in situ of the urinary bladder: a switch from luminal to basal phenotype and related therapeutic implications. Virchows Arch 472(5):749–758PubMedPubMedCentralCrossRefGoogle Scholar
  4. Blanpain C (2013) Tracing the cellular origin of cancer. Nat Cell Biol 15(2):126–134PubMedCrossRefGoogle Scholar
  5. Brabletz T (2012) EMT and MET in metastasis: where are the cancer stem cells? Cancer Cell 22(6):699–701PubMedCrossRefGoogle Scholar
  6. Celià-Terrassa T, Meca-Cortés O, Mateo F, Martínez de Paz A, Rubio N, Arnal-Estapé A, Ell BJ, Bermudo R, Díaz A, Guerra-Rebollo M, Lozano JJ, Estarás C, Ulloa C, Álvarez-Simón D, Milà J, Vilella R, Paciucci R, Martínez-Balbás M, de Herreros AG, Gomis RR, Kang Y, Blanco J, Fernández PL, Thomson TM (2012) Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Investig 122(5):1849–1868PubMedCrossRefGoogle Scholar
  7. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D’Alessio AC, Young RA, Weinberg RA (2013) Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154(1):61–74PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chan KS, McConkey DJ (2015) Cancer stem cells and intrinsic subtypes in bladder cancer. In: Bladder cancer: diagnosis and clinical management. Wiley-Blackwell, Hoboken, pp 342–352CrossRefGoogle Scholar
  9. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti J, Chang HY, van de Rijn M, Shortliffe L, Weissman IL (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A 106(33):14016–14021PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cheah MT, Chen JY, Sahoo D, Contreras-Trujillo H, Volkmer AK, Scheeren FA, Volkmer J-P, Weissman IL (2015) CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A 112(15):4725–4730PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen M-F, Lin P-Y, Wu C-F, Chen W-C, Wu C-T (2013) IL-6 expression regulates tumorigenicity and correlates with prognosis in bladder cancer. PLoS One 8(4):e61901PubMedPubMedCentralCrossRefGoogle Scholar
  12. Choi W, Shah JB, Tran M, Svatek R, Marquis L, Lee I-L, Yu D, Adam L, Wen S, Shen Y, Dinney C, McConkey DJ, Siefker-Radtke A (2012) p63 expression defines a lethal subset of muscle-invasive bladder cancers. PLoS One 7(1):e30206PubMedPubMedCentralCrossRefGoogle Scholar
  13. Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, Roth B, Cheng T, Tran M, Lee I-L, Melquist J, Bondaruk J, Majewski T, Zhang S, Pretzsch S, Baggerly K, Siefker-Radtke A, Czerniak B, Dinney CPN, McConkey DJ (2014) Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25(2):152–165PubMedPubMedCentralCrossRefGoogle Scholar
  14. Choi W, Ochoa A, McConkey DJ, Aine M, Höglund M, Kim WY, Real FX, Kiltie AE, Milsom I, Dyrskjøt L, Lerner SP (2017) Genetic alterations in the molecular subtypes of bladder cancer: illustration in the cancer genome atlas dataset. Eur Urol 72(3):354–365PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ciamporcero E, Shen H, Ramakrishnan S, Yu Ku S, Chintala S, Shen L, Adelaiye R, Miles KM, Ullio C, Pizzimenti S, Daga M, Azabdaftari G, Attwood K, Johnson C, Zhang J, Barrera G, Pili R (2016) YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35(12):1541–1553PubMedCrossRefGoogle Scholar
  16. Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, Wobker SE, Yeh JJ, Milowsky MI, Iyer G, Parker JS, Kim WY (2014) Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A 111(8):3110–3115PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dancik GM, Owens CR, Iczkowski KA, Theodorescu D (2014) A cell of origin gene signature indicates human bladder cancer has distinct cellular progenitors. Stem Cells 32(4):974–982PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dotsikas G, Konowalchuk T, Major PP, Kovac PE, Ward GK, Stewart SS, Price GB, Elhilali MM, Mackillop WJ (1987) Cellular heterogeneity in normal and neoplastic human urothelium: a study using murine monoclonal antibodies. Br J Cancer 56(4):439–444PubMedPubMedCentralCrossRefGoogle Scholar
  19. Fei DL, Li H, Kozul CD, Black KE, Singh S, Gosse JA, DiRenzo J, Martin KA, Wang B, Hamilton JW, Karagas MR, Robbins DJ (2010) Activation of hedgehog signaling by the environmental toxicant arsenic may contribute to the etiology of arsenic-induced tumors. Cancer Res 70(5):1981–1988PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ferreira-Teixeira M, Parada B, Rodrigues-Santos P, Alves V, Ramalho JS, Caramelo F, Sousa V, Reis F, Gomes CM (2015) Functional and molecular characterization of cancer stem-like cells in bladder cancer: a potential signature for muscle-invasive tumors. Oncotarget 6(34):36185–36201PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gaisa NT, Graham TA, McDonald SAC, Cañadillas-Lopez S, Poulsom R, Heidenreich A, Jakse G, Tadrous PJ, Knuechel R, Wright NA (2011) The human urothelium consists of multiple clonal units, each maintained by a stem cell. J Pathol 225(2):163–171PubMedCrossRefGoogle Scholar
  22. Gandhi D, Molotkov A, Batourina E, Schneider K, Dan H, Reiley M, Laufer E, Metzger D, Liang F, Liao Y, Sun T-T, Aronow B, Rosen R, Mauney J, Adam R, Rosselot C, Van Batavia J, McMahon A, McMahon J, Guo J-J, Mendelsohn C (2013) Retinoid signaling in progenitors controls specification and regeneration of the urothelium. Dev Cell 26(5):469–482PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hatina J (2012) The dynamics of cancer stem cells. Neoplasma 59(6):700–707PubMedCrossRefGoogle Scholar
  24. Hatina J, Schulz WA (2012) Stem cells in the biology of normal urothelium and urothelial carcinoma. Neoplasma 59(6):728–736PubMedCrossRefGoogle Scholar
  25. Hatina J, Parmar HS, Kripnerova M, Hepburn A, Heer R (2018) Urothelial carcinoma stem cells: current concepts, controversies, and methods. Methods Mol Biol 1655:121–136PubMedCrossRefGoogle Scholar
  26. Hatina J, Kripnerova M, Pesta M, Kuncova J, Sana J, Slaby O, Rodríguez R (2019) Sarcoma stem cell heterogeneity. In: Birbrair A (ed), Stem cells heterogeneity—novel concepts. Springer, New York.  https://doi.org/10.1007/978-3-030-11096-3_7Google Scholar
  27. He X, Marchionni L, Hansel DE, Yu W, Sood A, Yang J, Parmigiani G, Matsui W, Berman DM (2009) Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. Stem Cells 27(7):1487–1495PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hedegaard J, Lamy P, Nordentoft I, Algaba F, Høyer S, Ulhøi BP, Vang S, Reinert T, Hermann GG, Mogensen K, Thomsen MBH, Nielsen MM, Marquez M, Segersten U, Aine M, Höglund M, Birkenkamp-Demtröder K, Fristrup N, Borre M, Hartmann A, Stöhr R, Wach S, Keck B, Seitz AK, Nawroth R, Maurer T, Tulic C, Simic T, Junker K, Horstmann M, Harving N, Petersen AC, Calle ML, Steyerberg EW, Beukers W, van Kessel KEM, Jensen JB, Pedersen JS, Malmström P-U, Malats N, Real FX, Zwarthoff EC, Ørntoft TF, Dyrskjøt L (2016) Comprehensive transcriptional analysis of early stage urothelial carcinoma. Cancer Cell 30(1):27–42PubMedCrossRefGoogle Scholar
  29. Hepburn AC, Veeratterapillay R, Williamson SC, El-Sherif A, Sahay N, Thomas HD, Mantilla A, Pickard RS, Robson CN, Heer R (2012) Side population in human non-muscle invasive bladder cancer enriches for cancer stem cells that are maintained by MAPK signalling. PLoS One 7(11):e50690PubMedPubMedCentralCrossRefGoogle Scholar
  30. Izumi K, Taguri M, Miyamoto H, Hara Y, Kishida T, Chiba K, Murai T, Hirai K, Suzuki K, Fujinami K, Ueki T, Udagawa K, Kitami K, Moriyama M, Miyoshi Y, Tsuchiya F, Ikeda I, Kobayashi K, Sato M, Morita S, Noguchi K, Uemura H (2014) Androgen deprivation therapy prevents bladder cancer recurrence. Oncotarget 5(24):12665–12674PubMedPubMedCentralCrossRefGoogle Scholar
  31. Joseph DB, Chandrashekar AS, Abler LL, Chu L-F, Thomson JA, Mendelsohn C, Vezina CM (2018) In vivo replacement of damaged bladder urothelium by Wolffian duct epithelial cells. Proc Natl Acad Sci U S A 115(33):8394–8399PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmström P-U, Choi W, Guo CC, Lotan Y, Kassouf W (2016) Bladder cancer. Lancet 388(10061):2796–2810PubMedCrossRefGoogle Scholar
  33. Kitchen MO, Bryan RT, Haworth KE, Emes RD, Luscombe C, Gommersall L, Cheng KK, Zeegers MP, James ND, Devall AJ, Fryer AA, Farrell WE (2015) Methylation of HOXA9 and ISL1 predicts patient outcome in high-grade non-invasive bladder cancer. PLoS One 10(9):e0137003PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL, Chan KS (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517(7533):209–213PubMedCrossRefGoogle Scholar
  35. Kurzrock EA, Lieu DK, Degraffenried LA, Chan CW, Isseroff RR (2008) Label-retaining cells of the bladder: candidate urothelial stem cells. Am J Physiol Renal Physiol 294(6):F1415–F1421PubMedCrossRefGoogle Scholar
  36. Lehmann W, Mossmann D, Kleemann J, Mock K, Meisinger C, Brummer T, Herr R, Brabletz S, Stemmler MP, Brabletz T (2016) ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun 7:10498PubMedPubMedCentralCrossRefGoogle Scholar
  37. Li Y, Zheng Y, Izumi K, Ishiguro H, Ye B, Li F, Miyamoto H (2013) Androgen activates β-catenin signaling in bladder cancer cells. Endocr Relat Cancer 20(3):293–304PubMedCrossRefGoogle Scholar
  38. Lin C, Yin Y, Stemler K, Humphrey P, Kibel AS, Mysorekar IU, Ma L (2013) Constitutive β-catenin activation induces male-specific tumorigenesis in the bladder urothelium. Cancer Res 73(19):5914–5925PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ling S, Chang X, Schultz L, Lee TK, Chaux A, Marchionni L, Netto GJ, Sidransky D, Berman DM (2011) An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer Res 71(11):3812–3821PubMedPubMedCentralCrossRefGoogle Scholar
  40. Liu Q, Yuan W, Tong D, Liu G, Lan W, Zhang D, Xiao H, Zhang Y, Huang Z, Yang J, Zhang J, Jiang J (2016) Metformin represses bladder cancer progression by inhibiting stem cell repopulation via COX2/PGE2/STAT3 axis. Oncotarget 7(19):28235–28246PubMedPubMedCentralGoogle Scholar
  41. Luo F, Xu Y, Ling M, Zhao Y, Xu W, Liang X, Jiang R, Wang B, Bian Q, Liu Q (2013) Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells. Toxicol Appl Pharmacol 273(1):27–34PubMedCrossRefGoogle Scholar
  42. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715PubMedPubMedCentralCrossRefGoogle Scholar
  43. McConkey DJ, Lee S, Choi W, Tran M, Majewski T, Lee S, Siefker-Radtke A, Dinney C, Czerniak B (2010) Molecular genetics of bladder cancer: emerging mechanisms of tumor initiation and progression. Urol Oncol 28(4):429–440PubMedPubMedCentralCrossRefGoogle Scholar
  44. McConkey DJ, Choi W, Dinney CPN (2015) Genetic subtypes of invasive bladder cancer. Curr Opin Urol 25(5):449–458PubMedCrossRefGoogle Scholar
  45. Ocaña OH, Córcoles R, Fabra Á, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Nieto MA (2012) Metastatic colonization requires the repression of the epithelial-Mesenchymal transition inducer Prrx1. Cancer Cell 22(6):709–724PubMedCrossRefGoogle Scholar
  46. Ooki A, Del Carmen Rodriguez Pena M, Marchionni L, Dinalankara W, Begum A, Hahn NM, Van den Bussche CJ, Rasheed ZA, Mao S, Netto GJ, Sidransky D, Hoque MO (2017) YAP1 and COX2 coordinately regulate urothelial cancer stem-like cells. Cancer Res 78(1):168–181PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ooki A, Begum A, Marchionni L, VandenBussche CJ, Mao S, Kates M, Hoque MO (2018) Arsenic promotes the COX2/PGE2-SOX2 axis to increase the malignant stemness properties of urothelial cells. Int J Cancer 143(1):113–126PubMedCrossRefGoogle Scholar
  48. Papafotiou G, Paraskevopoulou V, Vasilaki E, Kanaki Z, Paschalidis N, Klinakis A (2016) KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat Commun 7:11914PubMedPubMedCentralCrossRefGoogle Scholar
  49. Paraskevopoulou V, Papafotiou G, Klinakis A (2016) KRT14 marks bladder progenitors. Cell Cycle 15(23):3161–3162PubMedPubMedCentralCrossRefGoogle Scholar
  50. Pathania R, Ramachandran S, Elangovan S, Padia R, Yang P, Cinghu S, Veeranan-Karmegam R, Arjunan P, Gnana-Prakasam JP, Sadanand F, Pei L, Chang C-S, Choi J-H, Shi H, Manicassamy S, Prasad PD, Sharma S, Ganapathy V, Jothi R, Thangaraju M (2015) DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun 6:6910PubMedPubMedCentralCrossRefGoogle Scholar
  51. Pavlidakey PG, MacLennan GT, Goldman HB (2010) Nephrogenic adenoma of the bladder. J Urol 184(6):2535–2536PubMedCrossRefGoogle Scholar
  52. Pignon J-C, Grisanzio C, Geng Y, Song J, Shivdasani RA, Signoretti S (2013) p63-expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia. Proc Natl Acad Sci U S A 110(20):8105–8110PubMedPubMedCentralCrossRefGoogle Scholar
  53. Puig I, Tenbaum SP, Chicote I, Arqués O, Martínez-Quintanilla J, Cuesta-Borrás E, Ramírez L, Gonzalo P, Soto A, Aguilar S, Eguizabal C, Caratù G, Prat A, Argilés G, Landolfi S, Casanovas O, Serra V, Villanueva A, Arroyo AG, Terracciano L, Nuciforo P, Seoane J, Recio JA, Vivancos A, Dienstmann R, Tabernero J, Palmer HG (2018) TET2 controls chemoresistant slow-cycling cancer cell survival and tumor recurrence. J Clin Investig 128(9):3887–3905PubMedCrossRefGoogle Scholar
  54. Reddy OL, Cates JM, Gellert LL, Crist HS, Yang Z, Yamashita H, Taylor JA, Smith JA, Chang SS, Cookson MS, You C, Barocas DA, Grabowska MM, Ye F, Wu X-R, Yi Y, Matusik RJ, Kaestner KH, Clark PE, DeGraff DJ (2015) Loss of FOXA1 drives sexually dimorphic changes in urothelial differentiation and is an independent predictor of poor prognosis in bladder cancer. Am J Pathol 185(5):1385–1395PubMedPubMedCentralCrossRefGoogle Scholar
  55. Schäfer F-M, Algarrahi K, Savarino A, Yang X, Seager C, Franck D, Costa K, Liu S, Logvinenko T, Adam R, Mauney JR (2017) Mode of surgical injury influences the source of urothelial progenitors during bladder defect repair. Stem Cell Rep 9(6):2005–2017CrossRefGoogle Scholar
  56. Shin K, Lee J, Guo N, Kim J, Lim A, Qu L, Mysorekar IU, Beachy PA (2011) Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472(7341):110–114PubMedPubMedCentralCrossRefGoogle Scholar
  57. Shin K, Lim A, Odegaard JI, Honeycutt JD, Kawano S, Hsieh MH, Beachy PA (2014a) Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nat Cell Biol 16(5):469–478PubMedPubMedCentralCrossRefGoogle Scholar
  58. Shin K, Lim A, Zhao C, Sahoo D, Pan Y, Spiekerkoetter E, Liao JC, Beachy PA (2014b) Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell 26(4):521–533PubMedPubMedCentralCrossRefGoogle Scholar
  59. Sugino T, Gorham H, Yoshida K, Bolodeoku J, Nargund V, Cranston D, Goodison S, Tarin D (1996) Progressive loss of CD44 gene expression in invasive bladder cancer. Am J Pathol 149(3):873–882PubMedPubMedCentralGoogle Scholar
  60. Van Batavia J, Yamany T, Molotkov A, Dan H, Mansukhani M, Batourina E, Schneider K, Oyon D, Dunlop M, Wu X-R, Cordon-Cardo C, Mendelsohn C (2014) Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol 16(10):982–991. 1–5PubMedCrossRefGoogle Scholar
  61. Wang C, Ross WT, Mysorekar IU (2017) Urothelial generation and regeneration in development, injury, and cancer. Dev Dyn 246(4):336–343PubMedPubMedCentralCrossRefGoogle Scholar
  62. Wu C-T, Wu C-F, Lu C-H, Lin C-C, Chen W-C, Lin P-Y, Chen M-F (2011) Expression and function role of DNA methyltransferase 1 in human bladder cancer. Cancer 117(22):5221–5233PubMedCrossRefGoogle Scholar
  63. Yang Z, He L, Lin K, Zhang Y, Deng A, Liang Y, Li C, Wen T (2017) The KMT1A-GATA3-STAT3 circuit is a novel self-renewal signaling of human bladder cancer stem cells. Clin Cancer Res 23(21):6673–6685PubMedCrossRefGoogle Scholar
  64. Zhang R, Knapp M, Suzuki K, Kajioka D, Schmidt JM, Winkler J, Yilmaz Ö, Pleschka M, Cao J, Kockum CC, Barker G, Holmdahl G, Beaman G, Keene D, Woolf AS, Cervellione RM, Cheng W, Wilkins S, Gearhart JP, Sirchia F, Di Grazia M, Ebert A-K, Rösch W, Ellinger J, Jenetzky E, Zwink N, Feitz WF, Marcelis C, Schumacher J, Martinón-Torres F, Hibberd ML, Khor CC, Heilmann-Heimbach S, Barth S, Boyadjiev SA, Brusco A, Ludwig M, Newman W, Nordenskjöld A, Yamada G, Odermatt B, Reutter H (2017) ISL1 is a major susceptibility gene for classic bladder exstrophy and a regulator of urinary tract development. Sci Rep 7:42170PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michaela Kripnerova
    • 1
  • Hamendra Singh Parmar
    • 1
    • 2
  • Martin Pesta
    • 1
  • Michaela Kohoutova
    • 3
  • Jitka Kuncova
    • 3
  • Karel Drbal
    • 4
  • Marie Rajtmajerova
    • 4
  • Jiri Hatina
    • 1
    Email author
  1. 1.Charles University, Faculty of Medicine in Pilsen, Institute of BiologyPilsenCzech Republic
  2. 2.School of Biotechnology, Devi Ahilya UniversityIndoreIndia
  3. 3.Charles University, Faculty of Medicine in Pilsen, Institute of PhysiologyPlzenCzech Republic
  4. 4.Charles University, Faculty of Science, Department of Cell BiologyPragueCzech Republic

Personalised recommendations