Skip to main content

The Role of Androgens for Body Composition and Physical Performance in Women

  • Chapter
  • First Online:
Book cover Menstrual Cycle Related Disorders

Part of the book series: ISGE Series ((ISGE))

Abstract

Androgens are considered beneficial for athletic performance by potent anabolic effects on muscle mass and bone tissue. Testosterone also increases the formation of new blood cells and circulating hemoglobin, which will enhance oxygen uptake. Furthermore, androgens may exert behavioral and psychological effects of importance for athletic performance including increased mental drive and competitiveness. Studies in men have shown dose–dependent relationship between circulating testosterone with muscle mass and strength, as well as circulating hemoglobin. Experimental evidence in women is much more limited. However, recent studies in nonathletic and athletic women have demonstrated associations between endogenous testosterone levels, muscle mass, and muscle strength. Furthermore, it has been demonstrated that women with mild hyperandrogenism like polycystic ovary syndrome (PCOS) are overrepresented in elite athletes. PCOS, which has a genetic component, is associated with an anabolic body composition, and this syndrome may therefore confer an advantage for physical performance and could play a role in the recruitment of women to competitive sport activities. The prevalence of severe hyperandrogenism, such as disorders of sex development (DSD), is also increased among female athletes. DSD may cause a greatly increased production of testosterone in the male range. These results support a significant role of endogenous androgens for athletic performance in women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Longcope C. Adrenal and gonadal androgen secretion in normal females. Clin Endocrinol Metab. 1986;15(2):213–28.

    Article  CAS  Google Scholar 

  2. Burger HG. Androgen production in women. Fertil Steril. 2002;77(Suppl 4):S3–5.

    Article  Google Scholar 

  3. Davison SL, Bell R, Donath S, Montalto JG, Davis SR. Androgen levels in adult females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005;90(7):3847–53.

    Article  CAS  Google Scholar 

  4. Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab. 1981;53(1):58–68.

    Article  CAS  Google Scholar 

  5. Labrie F, Martel C, Belanger A, Pelletier G. Androgens in women are essentially made from DHEA in each peripheral tissue according to intracrinology. J Steroid Biochem Mol Biol. 2017;168:9–18.

    Article  CAS  Google Scholar 

  6. Pretorius E, Arlt W, Storbeck KH. A new dawn for androgens: novel lessons from 11-oxygenated C19 steroids. Mol Cell Endocrinol. 2017;441:76–85.

    Article  CAS  Google Scholar 

  7. Herbst KL, Bhasin S. Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care. 2004;7:271–7.

    Article  CAS  Google Scholar 

  8. Manttari S, Anttila K, Jarvilehto M. Testosterone stimulates myoglobin expression in different muscles of the mouse. J Comp Physiol B. 2008;178:899–907.

    Article  Google Scholar 

  9. Auyeung TW, Lee JS, Kwok T, Leung J, Ohlsson C, Vandenput L, Leung PC, Woo J. Testosterone but not estradiol level is positively related to muscle strength and physical performance independent of muscle mass: a cross-sectional study in 1489 older men. Eur J Endocrinol. 2011;164(5):811–7.

    Article  CAS  Google Scholar 

  10. Bosco C, Tihanyi J, Viru A. Relationships between field fitness test and basal serumtestosterone and cortisol levels in soccer players. Clin Physiol. 1996;16(3):317–22.

    Article  CAS  Google Scholar 

  11. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, Chen X, Yarasheski KE, Magliano L, Dzekov C, Dzekov J, Bross R, Phillips J, Sinha-Hikim I, Shen R, Storer TW. Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab. 2001;281:E1172–81.

    Article  CAS  Google Scholar 

  12. Finkelstein JS, Lee H, Burnett-Bowie SA, Pallais JC, Yu EW, Borges LF, Jones BF, Barry CV, Wulczyn KE, Thomas BJ, Leder BZ. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369:1011–22.

    Article  CAS  Google Scholar 

  13. van Geel TACM, Geusens PP, Winkens B, Sels JPJE, Dinant G-J. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle mass, muscle strength and bone mineral density in postmenopausal women: a cross-sectional study. Eur J Endocrinol. 2009;160:681–7.

    Article  Google Scholar 

  14. Carmina E, Guastella E, Longo RA, Rini GB, Lobo RA. Correlates of increased lean muscle mass in women with polycystic ovary syndrome. Eur J Endocrinol. 2009;161:583–9.

    Article  CAS  Google Scholar 

  15. Huang G, Basaria S, Travison TG, Ho MH, Davda M, Mazer NA, Miciek R, Knapp PE, Zhang A, Collins L, Ursino M, Appleman E, Dzekov C, Stroh H, Ouellette M, Rundell T, Baby M, Bhatia NN, Khorram O, Friedman T, Storer TW, Bhasin S. Testosterone dose-response relationships in hysterectomized women with or without oophorectomy: effects on sexual function, body composition, muscle performance and physical function in a randomized trial. Menopause. 2014;21:612–23.

    Article  Google Scholar 

  16. Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev. 2017;97:135–87.

    Article  Google Scholar 

  17. Notelovitz M. Androgen effects on bone and muscle. Fertil Steril. 2002;77(Suppl 4):S34–41.

    Article  Google Scholar 

  18. Zborowski JV, Cauley JA, Talbott EO, Guzick DS, Winters SJ. Bone mineral density, androgens and the polycystic ovary: the complex and controversial issue of androgenic influence in female bone. J Clin Endocrinol Metab. 2000;85:3496–506.

    Article  CAS  Google Scholar 

  19. Steinberg KK, Freni-Titulaer LW, DePuey EG, Miller DT, Sgoutas DS, Coralli CH, Phillips DL, Rogers TN, Clark RV. Sex steroids and bone density in premenopausal and perimenopausal women. J Clin Endocrinol Metab. 1989;69:533–9.

    Article  CAS  Google Scholar 

  20. Douchi T, Oki T, Yamasaki H, Kuwahata R, Nakae M, Nagata Y. Relationship of androgens to muscle size and bone mineral density in women with polycystic ovary syndrome. Obstet Gynecol. 2001;98:445–9.

    CAS  PubMed  Google Scholar 

  21. Hirschberg AL. Sex hormones, appetite and eating behaviour in women. Maturitas. 2012;71:248–56.

    Article  CAS  Google Scholar 

  22. Pasquali R, Vicennati V, Gambineri A, Pagotto U. Sex-dependent role of glucocorticoids and androgens in the pathophysiology of human obesity. Int J Obes (Lond). 2008;32:1764–79.

    Article  CAS  Google Scholar 

  23. Shahani S, Braga-Basaria M, Maggio M, Basaria S. Androgens and erythropoiesis: past and present. J Endocrinol Invest. 2009;32:704–16.

    Article  CAS  Google Scholar 

  24. Bachman E, Travison TG, Basaria S, Davda MN, Guo W, Li M, Connor Westfall J, Bae H, Gordeuk V, Bhasin S. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point. J Gerontol A Biol Sci Med Sci. 2014;69:725–35.

    Article  CAS  Google Scholar 

  25. Ekblom B, Goldbarg AN, Gullbring B. Response to exercise after blood loss and reinfusion. J Appl Physiol. 1972;33:175–80.

    Article  CAS  Google Scholar 

  26. Wood RI, Stanton SJ. Testosterone and sport: current perspectives. Horm Behav. 2012;61:147–55.

    Article  CAS  Google Scholar 

  27. Bröder A, Hohmann N. Variations in risk taking behavior over the menstrual cycle: an improved replication. Evol Hum Behav. 2003;24:391–8.

    Article  Google Scholar 

  28. Lewin C, Wolgers G, Herlitz A. Sex differences favoring women in verbal but not in visuospatial episodic memory. Neuropsychology. 2001;15:165–73.

    Article  CAS  Google Scholar 

  29. Franke WW, Berendonk B. Hormonal doping and androgenization of athletes: a secret program of the German Democratic Republic government. Clin Chem. 1997;43(7):1262–79.

    CAS  PubMed  Google Scholar 

  30. IAAF List of athletes currently serving a period of ineligibility as a result of an anti-doping rule violation under IAAF rules. https://www.iaaf.org/about-iaaf/documents/anti-doping.

  31. Goldman A, Basaria S. Adverse health effects of androgen use. Mol Cell Endocrinol. 2018;15:464:46–55.

    Google Scholar 

  32. Cardinale M, Stone MH. Is testosterone influencing explosive performance? J Strength Cond Res. 2006;20(1):103–7.

    PubMed  Google Scholar 

  33. Bermon S, Garnier PY. Serum androgen levels and their relation to performance in track and field: mass spectrometry results from 2127 observations in male and female elite athletes. Br J Sports Med. 2017;51(17):1309–14.

    Article  Google Scholar 

  34. Eklund E, Berglund B, Labrie F, Carlström K, Ekström L, Hirschberg AL. Serum androgen profile and physcial performance in women olympic athletes. Br J Sports Med. 2017;51(17):1301–8.

    Article  Google Scholar 

  35. Rickenlund A, Carlström K, Ekblom B, Brismar T, von Schoultz B, Hirschberg AL. Hyperandrogenicity is an alternative mechanism underlying oligomenorrhea and amenorrhea in female athletes and may improve physical performance. Fertil Steril. 2003;79:947–55.

    Article  Google Scholar 

  36. Rickenlund A, Thorén M, Carlström K, von Schoultz B, Hirschberg AL. Diurnal profiles of testosterone and pituitary hormones suggest different mechanisms for menstrual disturbances in endurance athletes. J Clin Endocrinol Metab. 2004;89:702–7.

    Article  CAS  Google Scholar 

  37. Hagmar M, Berglund B, Brismar K, Hirschberg AL. Hyperandrogenism may explain reproductive dysfunction in female Olympic athletes. Med Sci Sports Exerc. 2009;41:1241–8.

    Article  Google Scholar 

  38. Coste O, Paris F, Galtier F, Letois F, Maïmoun L, Sultan C. Polycystic ovary-like syndrome in adolescent competitive swimmers. Fertil Steril. 2011;96:1037–42.

    Article  CAS  Google Scholar 

  39. Javed A, Kashyap R, Lteif AN. Hyperandrogenism in female athletes with functional hypothalamic amenorrhea: a distinct phenotype. Int J Women’s Health. 2015;7:103–11.

    CAS  Google Scholar 

  40. Turpeinen U, Linko S, Itkonen O, Hämäläinen E. Determination of testosterone in serum by liquid chromatography-tandem mass spectrometry. Scand J Clin Lab Invest. 2008;68:50–7.

    Article  CAS  Google Scholar 

  41. Bermon S, Garnier PY, Hirschberg AL, Robinson N, Giraud S, Nicoli R, Baume N, Saugy M, Fénichel P, Bruce SJ, Henry H, Dollé G, Ritzen M. Serum androgen levels in elite female athletes. J Clin Endocrinol Metab. 2014;99:4328–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelica Linden-Hirschberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Society of Gynecological Endocrinology

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Linden-Hirschberg, A. (2019). The Role of Androgens for Body Composition and Physical Performance in Women. In: Berga, S., Genazzani, A., Naftolin, F., Petraglia, F. (eds) Menstrual Cycle Related Disorders. ISGE Series. Springer, Cham. https://doi.org/10.1007/978-3-030-14358-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14358-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14357-2

  • Online ISBN: 978-3-030-14358-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics