Skip to main content

Heterogeneous Exascale Computing

  • Chapter
  • First Online:
Recent Advances in Intelligent Engineering

Abstract

Exascale services bring new unique challenges that the current computational, big data and workflow solutions are unable to meet. The chapter includes a detailed description of selected exascale services with known state of the art in extreme date solutions. The integration of requirements and the analysis of the state of the art in the exascale field is centered in on a description of a high-level architectural approach. The next main contribution of the paper is the description of the architecture capable to handle heterogeneous exascale services coming from both academic as well as industrial sphere. Those two models represent a (conceptual, and technological) design of a platform that addresses the requirements of the use cases. The resulting architecture will help us provide computing solutions to exascale challenges within the H2020 project PROCESS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    PROCESS project homepage https://www.process-project.eu/.

  2. 2.

    http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation.

  3. 3.

    http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation.

  4. 4.

    http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation.

  5. 5.

    https://cernvm.cern.ch/portal/filesystem.

  6. 6.

    http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Practices/picas/picas_overview.html.

  7. 7.

    https://github.com/lofar-astron/prefactor.

  8. 8.

    https://github.com/mhardcastle/ddf-pipeline.

  9. 9.

    The subchapter provides an example of a technology-based architecture that meets the requirements of the use cases (presented above) as well as the conceptual and functional requirements derived from the functional model of the PROCESS architecture.

  10. 10.

    Details concerning the MEE can be found at http://www.cyfronet.krakow.pl/cgw17/presentations/S7_2-EurValve-MEE-Oct-2017-v02.pdf.

  11. 11.

    Julpiter webpage http://jupyter.org/.

  12. 12.

    LOBCDER2] LOBCDER webpage https://ivi.fnwi.uva.nl/sne/wsvlam2/?page_id=14.

  13. 13.

    OASIS Topology and Orchestration Specification for https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca.

  14. 14.

    Cloudify] Cloudify: Cloud & NFV Orchestration Based on TOSCA https://cloudify.co/.

  15. 15.

    RIMROCK webpage https://submit.plgrid.pl.

  16. 16.

    Atmosphere webpage http://dice.cyfronet.pl/products/atmosphere.

  17. 17.

    Atkinson, M., Brezany, P., Krause, A., van Hemert, J., Janciak, I., Yaikhom, G.: DISPEL: Grammar and Concrete Syntax, version 1.0. The Admire Project, February 2010. Accessed March 2011. http://www.Admire-project.eu/docs/Admire-D1.7-research-prototypes.pdf.

References

  1. R. Agarwal, G. Juve, E. Deelman, Peer-to-peer data sharing for scientific workflows on amazon ec2, in 2012 SC Companion: High Performance Computing, Networking, Storage and Analysis (SCC) (IEEE, 2012), pp. 82–89

    Google Scholar 

  2. B. Allcock, I. Mandrichenko, T. Perelmutov, Gridftp v2 protocol description. GridFTP Working Group, Technical report, 2005

    Google Scholar 

  3. S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford, J. Dongarra, D. Kothe, R. Lusk, P. Messina, et al., The opportunities and challenges of exascale computing–summary report of the advanced scientific computing advisory committee (ASCAC) subcommittee. US Department of Energy Office of Science (2010)

    Google Scholar 

  4. M. Bobák, A.S.Z. Belloum, P. Nowakowski, J. Meizner, M. Bubak, M. Heikkurinen, O. Habala, L. Hluchý, Exascale computing and data architectures for brownfield applications, in 2018 14th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) (IEEE, 2018), pp. 461–468

    Google Scholar 

  5. J. Chen, A. Choudhary, S. Feldman, B. Hendrickson, C. Johnson, R. Mount, V. Sarkar, V. White, D. Williams, Synergistic challenges in data-intensive science and exascale computing: doe ASCAC data subcommittee report (2013)

    Google Scholar 

  6. L.B. Costa, H. Yang, E. Vairavanathan, A. Barros, K. Maheshwari, G. Fedak, D. Katz, M. Wilde, M. Ripeanu, S. Al-Kiswany, The case for workflow-aware storage: an opportunity study. J. Grid Comput. 13(1), 95–113 (2015)

    Article  Google Scholar 

  7. F. Dottori, P. Salamon, A. Bianchi, L. Alfieri, F.A. Hirpa, L. Feyen, Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 94, 87–102 (2016)

    Article  Google Scholar 

  8. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

    Google Scholar 

  9. O. Jimenez-del Toro, S. Otálora, M. Andersson, K. Eurén, M. Hedlund, M. Rousson, H. Müller, M. Atzori, Analysis of histopathology images: from traditional machine learning to deep learning, in Biomedical Texture Analysis (Elsevier, Amsterdam, 2018), pp. 281–314

    Google Scholar 

  10. M. Kluge, S. Simms, T. William, R. Henschel, A. Georgi, C. Meyer, M.S. Mueller, C.A. Stewart, W. Wünsch, W.E. Nagel, Performance and quality of service of data and video movement over a 100 gbps testbed. Futur. Gener. Comput. Syst. 29(1), 230–240 (2013)

    Article  Google Scholar 

  11. D. Kreutz, F.M. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  12. Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning efficient convolutional networks through network slimming, in 2017 IEEE International Conference on Computer Vision (ICCV) (IEEE, 2017), pp. 2755–2763

    Google Scholar 

  13. G. Montavon, W. Samek, K.-R. Müller, Methods for interpreting and understanding deep neural networks. Digit. Signal Process. (2017)

    Google Scholar 

  14. R. Rudari, F. Silvestro, L. Campo, N. Rebora, G. Boni, CIMA Research Foundation, C. Herold, UNEP-GRID, Improvement of the global food model for the gar 2015. Global Assessment Report on Disaster Risk Reduction 2015 (2015)

    Google Scholar 

  15. T. Shimwell, H. Röttgering, P.N. Best, W. Williams, T. Dijkema, F. De Gasperin, M. Hardcastle, G. Heald, D. Hoang, A. Horneffer et al., The lofar two-metre sky survey-i. Survey description and preliminary data release. Astron. Astrophys. 598, A104 (2017)

    Article  Google Scholar 

  16. A. Sim, A. Shoshani, The storage resource manager interface specification, version 2.2, in CERN, FNAL, JLAB, LBNL and RAL (Citeseerx, 2007)

    Google Scholar 

  17. A. Simonet, G. Fedak, M. Ripeanu, Active data: a programming model to manage data life cycle across heterogeneous systems and infrastructures. Futur. Gener. Comput. Syst. 53, 25–42 (2015)

    Article  Google Scholar 

  18. Storage Networking Industry Association. Cloud data management interface (CDMI) (2010)

    Google Scholar 

  19. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition (2015), pp. 1–9

    Google Scholar 

  20. R. Tudoran, A. Costan, O. Nano, I. Santos, H. Soncu, G. Antoniu, Jetstream: enabling high throughput live event streaming on multi-site clouds. Futur. Gener. Comput. Syst. 54, 274–291 (2016)

    Article  Google Scholar 

  21. L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, D. Chen, G-hadoop: mapreduce across distributed data centers for data-intensive computing. Futur. Gener. Comput. Syst. 29(3), 739–750 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by projects EU H2020-777533 PROCESS PROviding Computing solutions for ExaScale ChallengeS, APVV-17-0619, and VEGA 2/0167/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Hluchý .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hluchý, L. et al. (2020). Heterogeneous Exascale Computing. In: Kovács, L., Haidegger, T., Szakál, A. (eds) Recent Advances in Intelligent Engineering. Topics in Intelligent Engineering and Informatics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-14350-3_5

Download citation

Publish with us

Policies and ethics