Skip to main content

A Priori Membership for Data Representation: Case Study of SPECT Heart Data Set

  • Chapter
  • First Online:

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 14))

Abstract

The image is important source for analytics. However, global reductions and local features are hard to solve. This paper proposes an innovative membership for data representation thus providing an easier and simpler way for both. Technically, it adopts relevant preference for inference. In this paper, its operations include reducing variables and identifying sparse features by taking advantage of evidence. In illustration, an image study of proton emission in UCI SPECT is presented. It discloses key variables of abnormal samples buried in normal range. The contribution of this paper lies in providing priori data to enhance representation learning.

Fully documented templates are available in the elsarticle package on CTAN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. X. Zhu, S. Zhang, R. Hu, Y. Zhu, J. Song, Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans. Knowl. Data Eng. 30(3), 517–529 (2018). https://doi.org/10.1109/TKDE.2017.2763618

    Article  Google Scholar 

  2. D. Wang, F. Nie, H. Huang, Feature selection via global redundancy minimization. IEEE Trans. Knowl. Data Eng. 27(10), 2743–2755 (2015). https://doi.org/10.1109/TKDE.2015.2426703

    Article  Google Scholar 

  3. L. Baroffio, A. Canclini, M. Cesana, A. Redondi, M. Tagliasacchi, S. Tubaro, Coding local and global binary visual features extracted from video sequences. IEEE Trans. Image Process. 24(11), 3546–3560 (2015). https://doi.org/10.1109/TIP.2015.2445294

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Cui, K.N. Ngan, Global propagation of affine invariant features for robust matching. IEEE Trans. Image Process. 22(7), 2876–2888 (2013). https://doi.org/10.1109/TIP.2013.2246521

    Article  Google Scholar 

  5. A. Astrom, R. Forchheimer, J. Eklund, Global feature extraction operations for near-sensor image processing. IEEE Trans. Image Process. 5(1), 102–110 (1996). https://doi.org/10.1109/83.481674

    Article  Google Scholar 

  6. G. Liu, Z. Lin, Y. Yu, Robust subspace segmentation by low-rank representation, in Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10 (Omnipress, USA, 2010), pp. 663–670, http://dl.acm.org/citation.cfm?id=3104322.3104407

  7. Y. Zhang, Z. Jiang, L.S. Davis, Learning structured low-rank representations for image classification, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 676–683. https://doi.org/10.1109/CVPR.2013.93

  8. Y.-C. Ko, H. Fujita, Evidential probability of signals on a price herd predictions: case study on solar energy companies. Int. J. Approx. Reason. 92, 255–269 (2018). https://doi.org/10.1016/j.ijar.2017.10.015, http://www.sciencedirect.com/science/article/pii/S0888613X1730213X

  9. G.F. Tzortzis, A.C. Likas, The global kernel\(k\)-means algorithm for clustering in feature space. IEEE Trans. Neural Netw. 20(7), 1181–1194 (2009). https://doi.org/10.1109/TNN.2009.2019722

    Article  Google Scholar 

  10. J. Chai, H. Liu, Z. Bao, Combinatorial discriminant analysis: supervised feature extraction that integrates global and local criteria. Electron. Lett. 45(18), 934–935 (2009). https://doi.org/10.1049/el.2009.1423

    Article  Google Scholar 

  11. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  12. Y. Bengio, O. Delalleau, N.L. Roux, The curse of highly variable functions for local kernel machines, in Advances in Neural Information Processing Systems 18, ed. by Y. Weiss, B. Schölkopf, J.C. Platt (MIT Press, Cambridge, 2006), pp. 107–114, http://papers.nips.cc/paper/2810-the-curse-of-highly-variable-functions-for-local-kernel-machines.pdf

  13. T. Davenport, Competing on analytics. Harv. Bus. Rev. 84, 98–107, 134 (2006)

    Google Scholar 

  14. H. Chen, R.H.L. Chiang, V.C. Storey, Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012), http://www.jstor.org/stable/41703503

  15. S. LaValle, E. Lesser, R. Shockley, M.S. Hopkins, N. Kruschwitz, Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52(2), 21–32 (2011)

    Google Scholar 

  16. T.H. Davenport, D.J. Patil, Data scientist: the sexiest job of the 21st century. Harv. Bus. Rev. 90(10), 70–76 (2012), https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century

  17. M. Kim, T. Zimmermann, R. DeLine, A. Begel, The emerging role of data scientists on software development teams, in Proceedings of the 38th International Conference on Software Engineering, ICSE ’16 (ACM, New York, 2016), pp. 96–107. https://doi.org/10.1145/2884781.2884783, http://doi.acm.org/10.1145/2884781.2884783

  18. Wikipedia, Data science (2018), https://en.wikipedia.org/wiki/Data_science#cite_note-Hayashi-3

  19. Z. Pawlak, Granularity of knowledge, indiscernibility and rough sets, in Proceedings of the 1998 IEEE International Conference on Fuzzy Systems. IEEE World Congress on Computational Intelligence, vol. 1 (1998) pp. 106–110

    Google Scholar 

  20. Y. Yao, Rough sets, neighborhood systems and granular computing, in 1999 IEEE Canadian Conference on Electrical and Computer Engineering, vol. 3 (1999), pp. 1553–1558

    Google Scholar 

  21. S. Greco, B. Matarazzo, R. Slowinski, Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)

    Article  Google Scholar 

  22. Z. Pawlak, Rough probability. Bull. Polish Acad. Sci. Math 32(9–10), 607–612 (1984)

    MathSciNet  MATH  Google Scholar 

  23. Z. Pawlak, Rough sets, rough relations and rough functions. Fundam. Inf. 27(2–3), 103–108 (1996), http://dl.acm.org/citation.cfm?id=241838.241839

  24. Z. Pawlak, Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 99(1), 48–57 (1997). https://doi.org/10.1016/S0377-2217(96)00382-7, http://www.sciencedirect.com/science/article/pii/S0377221796003827

  25. R. Slowinski, J. Stefanowski, Rough classification in incomplete information systems. Math. Comput. Model. 12(10–11), 1347–1357 (1989)

    Article  Google Scholar 

  26. T. Denoeux, L.M. Zouhal, Handling possibilistic labels in pattern classification using evidential reasoning. Fuzzy Sets Syst. 122(3), 409–424 (2001). https://doi.org/10.1016/S0165-0114(00)00086-5, http://www.sciencedirect.com/science/article/pii/S0165011400000865

  27. S. Greco, B. Matarazzo, R. Slowinski, Rough approximation by dominance relations. Int. J. Intell. Syst. 17(2), 153–171 (2002)

    Article  Google Scholar 

  28. R. Slowinski, S. Greco, B. Matarazzo, Rough sets in decision making, in Encyclopedia of Complexity and Systems Science, ed. by A.R. Meyers (Springer, New York, 2009), pp. 7753–7787

    Chapter  Google Scholar 

  29. M.G. Augeri, P. Cozzo, S. Greco, Dominance-based rough set approach: an application case study for setting speed limits for vehicles in speed controlled zones. Knowl. Based Syst. 89, 288–300 (2015). https://doi.org/10.1016/j.knosys.2015.07.010

    Article  Google Scholar 

  30. J.A. Camilo, L.M. Collins, J.M. Malof, A large comparison of feature-based approaches for buried target classification in forward-looking ground-penetrating radar. IEEE Trans. Geosci. Remote. Sens. 56(1), 547–558 (2018). https://doi.org/10.1109/TGRS.2017.2751461

    Article  Google Scholar 

  31. B. Thompson, J. Cartmill, M.R. Azimi-Sadjadi, S.G. Schock, A multichannel canonical correlation analysis feature extraction with application to buried underwater target classification, in Proceedings of the 2006 IEEE International Joint Conference on Neural Network (2006), pp. 4413–4420. https://doi.org/10.1109/IJCNN.2006.247042

  32. T. Denoeux, O. Kanjanatarakul, S. Sriboonchitta, Ek-nnclus: a clustering procedure based on the evidential k-nearest neighbor rule. Knowl. Based Syst. 88, 57–69 (2015). https://doi.org/10.1016/j.knosys.2015.08.007, http://www.sciencedirect.com/science/article/pii/S0950705115003111

  33. T. Denoeux, S. Sriboonchitta, O. Kanjanatarakul, Evidential clustering of large dissimilarity data. Knowl. Based Syst. 106, 179–195 (2016). https://doi.org/10.1016/j.knosys.2016.05.043, http://www.sciencedirect.com/science/article/pii/S095070511630140X

  34. Y. Ma, J. Wright, A.Y. Yang, Wiki Home (2018), https://people.eecs.berkeley.edu/~yang/courses/ECCV2012/index.htm

  35. E.J. Candes, X. Li, Y. Ma, J. Wright, Robust principal component analysis?. J. ACM 58(3), 11:1–11:37 (2011). https://doi.org/10.1145/1970392.1970395, http://doi.acm.org/10.1145/1970392.1970395

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamido Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujita, H., Ko, YC. (2020). A Priori Membership for Data Representation: Case Study of SPECT Heart Data Set. In: Kovács, L., Haidegger, T., Szakál, A. (eds) Recent Advances in Intelligent Engineering. Topics in Intelligent Engineering and Informatics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-14350-3_4

Download citation

Publish with us

Policies and ethics