Skip to main content

State and Loop Equivalence for Linear Parameter Varying Systems

  • Chapter
  • First Online:
  • 311 Accesses

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 14))

Abstract

In the last decades the LPV modelling paradigm grew up from the desire of having a gain scheduling method with guaranteed stability and performance bound by using as much as possible from the classical design techniques. LPV design becomes a proven method of the field of robust control through a series of applications. While system equivalence, state transformation and loop transformation are fundamental concepts and efficient tools of the linear time invariant (LTI) theory, in the context of the LPV framework some basic modelling issues still evades the attention of the researchers. The main goal of the paper is to provide an initialization in LPV modelling and to review the fundamental concepts in order to eliminate the possible pitfalls that often occur in the related literature. The work provides an opportunity for pointing out some research topics that might be interesting for a much larger audience, too.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Balas, J. Bokor, Z. Szabó, Invariant subspaces for LPV systems and their applications. IEEE Trans. Autom. Control 48(11), 2065–2069 (2003)

    Article  MathSciNet  Google Scholar 

  2. Z. Szabó, J. Bokor, G. Balas, Inversion of LPV systems and its application to fault detection, in Proceedings of the 5th IFAC Symposium on fault detection supervision and safety for technical processes (SAFEPROCESS’03), Washington, USA (2003), pp. 235–240

    Google Scholar 

  3. J. Bokor, G. Balas, Detection filter design for LPV systems—a geometric approach. Automatica 40(3), 511–518 (2004)

    Article  MathSciNet  Google Scholar 

  4. T. Luspay, T. Péni, I. Gőzse, Z. Szabó, B. Vanek, Model reduction for LPV systems based on approximate modal decomposition. Int. J. Numer. Meth. Eng. 113(6), 891–909 (2018)

    Article  MathSciNet  Google Scholar 

  5. Z. Alkhoury, M. Petreczky, G. Mercere, comparing global input-output behavior of frozen-equivalent LPV state-space models, in IFAC-PapersOnLine, vol. 50, no. 1, 20th IFAC World Congress (2017), pp. 9766–9771

    Google Scholar 

  6. Z. Szabó, T. Péni, J. Bokor, Null-space computation for qLPV systems, in IFAC-PapersOnLine, 1st IFAC Workshop on Linear Parameter Varying Systems, Grenoble, France, vol. 48, no. 26 (2015), pp. 170–175

    Google Scholar 

  7. T. Péni, B. Vanek, G. Lipták, Z. Szabó, J. Bokor, Nullspace-based input reconfiguration architecture for over actuated aerial vehicles. IEEE Trans. Control Syst. Technol. no. 99 (2017), pp. 1–8

    Google Scholar 

  8. R.E. Kalman, Mathematical description of linear dynamical systems. SIAM J. Control 1(2), 152–192 (1963)

    MathSciNet  MATH  Google Scholar 

  9. L. Silverman, Representation and realization of time-variable linear systems. Technical Report (Department of Electrical Engineering, Columbia University, New York, 1966)

    Google Scholar 

  10. A. Isidori, A. Ruberti, State-space representation and realization of time-varying linear input–output functions. J. Franklin Inst. 301(6), 573–592 (1976)

    Article  MathSciNet  Google Scholar 

  11. E. Kamen, New results in realization theory for linear time-varying analytic systems. IEEE Trans. Autom. Control 24(6), 866–878 (1979)

    Article  MathSciNet  Google Scholar 

  12. E. Sontag, Realization theory of discrete-time nonlinear systems: part I-the bounded case. IEEE Trans. Circuits Syst. 26(5), 342–356 (1979)

    Article  Google Scholar 

  13. P. Dewilde, A.-J. van der Veen, Time-varying state space realizations, in Time-Varying Systems and Computations (Springer, Boston, 1998), pp. 33–72

    Google Scholar 

  14. R. Tóth, Identification and Modeling of Linear Parameter-Varying Systems, in Lecture Notes in Control and Information Sciences, vol. 403 (Springer, Heidelberg, 2010)

    Google Scholar 

  15. R. Toth, H.S. Abbas, H. Werner, On the state-space realization of LPV input-output models: practical approaches. IEEE Trans. Control Syst. Technol. 20(1), 139–153 (2012)

    Google Scholar 

  16. M. Petreczky, R. Tóth, G. Mercere, Realization theory for LPV state-space representations with affine dependence. IEEE Trans. Autom. Control 62(9), 4667–4674 (2017)

    Article  MathSciNet  Google Scholar 

  17. L.M. Silverman, H.E. Meadows, Equivalent realizations of linear systems. SIAM J. Appl. Math. 17(2), 393–408 (1969)

    Article  MathSciNet  Google Scholar 

  18. F. Blanchini, D. Casagrande, S. Miani, Stable LPV realization of parametric transfer functions and its application to gain-scheduling control design. IEEE Trans. Autom. Control 55(10), 2271–2281 (2010)

    Article  MathSciNet  Google Scholar 

  19. M. Wonham, Linear Multivariable Control: A Geometric Approach (Springer, Berlin, 1985)

    Google Scholar 

  20. G.B. Basile, G. Marro, Controlled and Conditioned Invariants in Linear System Theory (Prentice Hall, Englewood Cliffs, 1992)

    Google Scholar 

  21. A. Isidori, Nonlinear Control Systems (Springer, Berlin, 1989)

    Google Scholar 

  22. C. De Persis, A. Isidori, On the observability codistributions of a nonlinear system. Syst. Control Lett. 40(5), 297–304 (2000)

    Article  MathSciNet  Google Scholar 

  23. J. Bokor, Z. Szabo, Fault detection and isolation in nonlinear systems. Annu. Rev. Control 33(2), 1–11 (2009)

    Article  Google Scholar 

  24. R. Tóth, F. Felici, P.S.C. Heuberger, P.M.J.V. den Hof, Discrete time LPV I/O and state space representations, differences of behavior and pitfalls of interpolation, in 2007 European Control Conference (ECC) (2007), pp. 5418–5425

    Google Scholar 

  25. A. Feintuch, Robust Control Theory in Hilbert Space, in Applied Mathematical Sciences 130 (Springer, New York, 1998)

    Google Scholar 

  26. M. Vidyasagar, Control System Synthesis: A Factorization Approach (MIT Press, Cambridge, 1985)

    MATH  Google Scholar 

  27. B.D. Anderson, A. Ilchmann, F.R. Wirth, Stabilizability of linear time-varying systems. Syst. Control Lett. 62(9), 747–755 (2013)

    Article  MathSciNet  Google Scholar 

  28. W. Xie, T. Eisaka, Design of LPV control systems based on Youla parameterization. IEE Proc. Control Theory Appl. 151(4), 465–472 (2004)

    Article  Google Scholar 

  29. I. Ellouze, M.A. Hammami, A separation principle of time-varying dynamical systems: a practical stability approach. Math. Modelling Anal. 12(3), 297–308 (2007)

    Article  MathSciNet  Google Scholar 

  30. A. Shiriaev, R. Johansson, A. Robertsson, L. Freidovich, Separation principle for a class of nonlinear feedback systems augmented with observers, in IFAC Proceedings Volumes, 17th IFAC World Congress Seoul, Korea, vol. 41, no. 2 (2008), pp. 6196–6201

    Google Scholar 

  31. H. Damak, I. Ellouze, M.A. Hammami, A separation principle of time-varying nonlinear dynamical systems. Differ. Equ. Control Process, 1, 36–49 (2013)

    Google Scholar 

  32. G.I. Bara, J. Daafouz, J. Ragot, Gain scheduling techniques for the design of observer state feedback controllers, in IFAC Proceedings Volumes, 15th IFAC World Congress Barcelona, Spain, vol. 35, no. 1 (2002), pp. 13–18

    Google Scholar 

  33. A. Bouali, M. Yagoubi, P. Chevrel, Gain scheduled observer state feedback controller for rational LPV systems, in IFAC Proceedings Volumes, 17th IFAC World Congress Seoul, Korea, vol. 41, no. 2 (2008), pp. 4922–4927

    Google Scholar 

  34. F. Blanchini, S. Miani, Stabilization of LPV systems: state feedback, state estimation, and duality. SIAM J. Control Optim. 42(1), 76–97 (2003)

    Article  MathSciNet  Google Scholar 

  35. J.A. Ball, J.W. Helton, M. Verma, A factorization principle for stabilization of linear control systems. J. Nonlinear Robust Control 1, 229–294 (1991)

    Article  Google Scholar 

  36. Z. Szabó, P. Seiler, J. Bokor, Internal stability and loop-transformations: an overview on LFTs, Möbius transforms and chain scattering, in 20th IFAC World Congress Toulouse, France, IFAC-PapersOnLine, vol. 50, no. 1 (2017), pp. 7547–7553

    Google Scholar 

  37. M.-C. Tsai, D. Gu, Robust and Optimal Control—A Two-Port Framework Approach (Springer, Berlin, 2014)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the GINOP-2.3.2-15-2016-00002 grant of the Ministry of National Economy of Hungary and by the European Commission through the H2020 project EPIC under grant No. 739592.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Szabó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bokor, J., Szabó, Z. (2020). State and Loop Equivalence for Linear Parameter Varying Systems. In: Kovács, L., Haidegger, T., Szakál, A. (eds) Recent Advances in Intelligent Engineering. Topics in Intelligent Engineering and Informatics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-14350-3_1

Download citation

Publish with us

Policies and ethics