Skip to main content

Bird Migration in South America: The Fork-tailed Flycatcher (Tyrannus savana) as a Case Study

  • Chapter
  • First Online:
Behavioral Ecology of Neotropical Birds

Abstract

Bird migration in South America is highly diverse, with some species migrating solely within the tropical latitudes, others migrating between tropical wintering grounds and south-temperate breeding grounds, and yet other migrating within south-temperate latitudes of the continent. Until recently, bird migration in South America was virtually ignored; however, a growing body of research is shedding new light into the timing, routes, and overall migratory strategies employed by birds that migrate within this vast continent. The unique geographic and climatic context of South America (i.e., no oceanic or mountain barriers and a buffered oceanic climate) likely results in a distinct set of tradeoffs between seasonal life-history demands of migration, reproduction, and molt. Nevertheless, we still understand very little about the mechanisms underpinning such relationships throughout the annual cycle of migratory birds on the continent, and how they ultimately influence the evolution of bird migration in South America. In this chapter, we (1) provide a brief description of bird migration patterns in South America, (2) review the current state of knowledge about the drivers of songbird migration on the continent, particularly those resulting from research on the Fork-tailed Flycatcher (Tyrannus savana), and (3) suggest future avenues for research to understand the mechanisms driving these patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alan RR, McWilliams SR, McGraw KJ (2013) The importance of antioxidants for avian fruit selection during autumn migration. Wilson J Ornithol 125:513–525

    Article  Google Scholar 

  • Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152(S1):S5–S23

    Article  Google Scholar 

  • Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy and safety. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 331–351

    Chapter  Google Scholar 

  • Amorim FW, DeÁvila RS Jr, De Camargo AJ, Vieira AL, Oliveira PE (2009) A hawkmoth crossroads? Species richness, seasonality and biogeographical affinities of sphingidae in a Brazilian Cerrado. J Biogeogr 36:662–674

    Article  Google Scholar 

  • Andersson M (1982) Female choice selects for extreme tail length in a widowbird. Nature 299:818–820

    Article  Google Scholar 

  • Araujo HF, Vieira-Filho AH, Barbosa MRDV, Diniz-Filho JAF, da Silva JMC (2017) Passerine phenology in the largest tropical dry forest of South America: effects of climate and resource availability. Emu 117:78–91

    Google Scholar 

  • Areta JI, Bodrati A (2008) Movimientos estacionales y afinidad filogenética de la viudita coluda (Muscipipra vetula). Ornitol Neotrop 19:201–211

    Google Scholar 

  • Areta JI, Bodrati A (2010) Un sistema migratorio longitudinal dentro de la selva atlántica: movimientos estacionales y taxonomía del tangará cabeza celeste (Euphonia cyanocephala) en Misiones (Argentina) y Paraguay. Ornitol Neotrop 21:71–86

    Google Scholar 

  • Bairlein F (1991) Nutritional adaptations to fat deposition in the long-distance migratory Garden Warbler (Sylvia borin). Proceedings of the 20th International Ornithological Congress. Christ-church, NZ. pp 2149–2158

    Google Scholar 

  • Bairlein F (2002) How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwissenschaften 89:1–10

    Article  PubMed  Google Scholar 

  • Barry JH, Butler LK, Rohwer S, Rohwer VG (2009) Documenting molt-migration in Western Kingbird (Tyrannus verticalis) using two measures of collecting effort. Auk 126:260–267

    Article  Google Scholar 

  • Barta Z, McNamara JM, Houston AI, Weber TP, Hedenström A, Feró O (2008) Optimal moult strategies in migratory birds. Philos Trans R Soc B 363:211–229

    Article  Google Scholar 

  • Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K (2017) Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359:83–86

    Article  CAS  Google Scholar 

  • Bczuska JC (2017) A migração do sabiá-una no Paraná: validando o comportamento e identificando seus potenciais determinantes bióticos e climáticos. MS Thesis, Universidade Federal do Paraná, Curitiba, Brazil

    Google Scholar 

  • Bejarano V, Jahn AE (2018) Relationship between arrival timing and breeding success of intra-tropical migratory Fork-tailed Flycatchers (Tyrannus savana). J Field Ornithol 89:109–116

    Article  Google Scholar 

  • Bell CP (2005) The origin and development of bird migration: comments on Rappole and Jones, and an alternative evolutionary model. Ardea 93:115–123

    Google Scholar 

  • Bonier F, Martin PR, Jensen JP, Butler LK, Ramenofsky M, Wingfield JC (2007) Pre-migratory life history stages of juvenile arctic birds: costs, constraints, and trade-offs. Ecology 88:2729–2735

    Article  PubMed  Google Scholar 

  • Boyle WA, Conway CJ (2007) Why migrate? A test of the evolutionary precursor hypothesis. Am Nat 169:344–359

    Article  PubMed  Google Scholar 

  • Boyles M (2011) Seasonal diet preferences for fatty acids differ between species of migratory passerine, are affected by antioxidant level, and relate to the fatty acid composition of wild fruits. Natural Resources Science Kingston (RI): University of Rhode Island, p 119

    Google Scholar 

  • Bravo SP, Cueto VR, Gorosito CA (2017) Migratory timing, rate, routes and wintering areas of White–crested Elaenia (Elaenia albiceps chilensis), a key seed disperser for Patagonian forest regeneration. PLoS One 12:e0170188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brett MT, Muller-Navarra DC (1997) The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw Biol 38:483–499

    Article  CAS  Google Scholar 

  • Chai P, Altshuler DL, Stephens DB, Dillon ME (1999) Maximal horizontal flight performance of hummingbirds: effects of body mass and molt. Physiol Biochem Zool 72:145–155

    Article  CAS  PubMed  Google Scholar 

  • Chesser RT (1994) Migration in South America, an overview of the Austral system. Bird Conserv Int 4:91–107

    Article  Google Scholar 

  • Chesser RT, Levey DJ (1998) Austral migrants and the evolution of migration in New World birds: diet, habitat, and migration revisited. Am Nat 152:311–319

    Article  CAS  PubMed  Google Scholar 

  • Cueto VR, Jahn AE (2008) Sobre la necesidad de tener un nombre estandarizado para las aves que migran dentro de América del Sur. Hornero 23:1–4

    Google Scholar 

  • de Heij ME, van den Hout PJ, Tinbergen JM (2006) Fitness cost of incubation in great tits (Parus major) is related to clutch size. Proc R Soc B 273:2353–2361

    Article  PubMed  PubMed Central  Google Scholar 

  • Davenport LC, Nole I, Carlos N (2012) East with the night: longitudinal migration of the Orinoco Goose (Neochen jubata) between Manu National Park, Perú and the Llanos de Moxos, Bolivia. PLoS One 7:e46886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davenport LC, Goodenough KS, Haugaasen T (2016) Birds of two oceans? Trans-Andean and divergent migration of black skimmers (Rynchops niger cinerascens) from the Peruvian Amazon. PLoS One 11:e0144994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson TJ, Maloney SK (2004) Fur versus feathers: the different roles of Red Kangaroo fur and Emu feathers in thermoregulation in the Australian arid zone. Aust Mammal 26:145–151

    Article  Google Scholar 

  • Dawson A, Hinsley SA, Ferns PN, Bonser RHC, Eccleston L (2000) Rate of moult affects feather quality: a mechanism linking current reproductive effort to future survival. Proc R Soc B 267:2093–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz MW, Rogers KG, Piersma T (2013) When the seasons don’t fit: speedy molt as a routine carry-over cost of reproduction. PLoS One 8:e53890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dingle H (2008) Bird migration in the southern hemisphere: a review comparing continents. Emu 108:341–359

    Article  Google Scholar 

  • Done T, Gow EA, Stutchbury BJM (2011) Corticosterone stress response and plasma metabolite levels during breeding and molt in a free-living migratory songbird, the wood thrush (Hylocichla mustelina). Gen Comp Endocrinol 171:176–182

    Article  CAS  PubMed  Google Scholar 

  • Echeverry-Galvis MA, Hau M (2012) Molt–breeding overlap alters molt dynamics and behavior in zebra finches, Taeniopygia guttata castanotis. J Exp Biol 215:1957–1964

    Article  PubMed  Google Scholar 

  • Echeverry-Galvis MA, Hau M (2013) Flight performance and feather quality: paying the price of overlapping moult and breeding in a tropical highland bird. PLoS One 8:e61106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans MR, Thomas ALR (1997) Testing the functional significance of tail streamers. Proc R Soc Lond B 264:211–217

    Article  Google Scholar 

  • Foster M (1975) The overlap of molting and breeding in some tropical birds. Condor 77:304–314

    Article  Google Scholar 

  • Franchini P, Irisarri I, Fudickar A, Schmidt A, Meyer A, Wikelski M, Partecke J (2017) Animal tracking meets migration genomics: transcriptomic analysis of a partially migratory bird species. Mol Ecol 26:3204–3226

    Article  CAS  PubMed  Google Scholar 

  • Galetti M (2001) Seasonal movements and diet of the Plumbeous pigeon (Columba plumbea) in a Brazilian Atlantic forest. Melopsittacus 4:39–43

    Google Scholar 

  • Gottsberger G, Silberbauer-Gottsberger I (2006) Life in the Cerrado: a South American tropical seasonal vegetation, Origin, structure, dynamics and plant use, vol 1. Reta Verlag, Ulm

    Google Scholar 

  • Guaraldo AC, Kelly JF, Marini MÂ (2016) Contrasting annual cycles of an intratropical migrant and a tropical resident bird. J Ornithol 157:695–705

    Article  Google Scholar 

  • Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80:4–18

    Article  PubMed  Google Scholar 

  • Hartlaub G (1844) Description de sep Oiseaux nouveaux de Guatemala. Rev Zool 7:214–216

    Google Scholar 

  • Heckscher C, Halley M, Stampul P (2015) Intratropical migration of a Nearctic-Neotropical migratory songbird (Catharus fuscescens) in South America with implications for migration theory. J Trop Ecol 31:285–289

    Article  Google Scholar 

  • Hedenström A (2003) Flying with holey wings. J Avian Biol 34:324–327

    Article  Google Scholar 

  • Hedenström A, Sunada S (1999) On the aerodynamics of moult gaps in birds. J Exp Biol 202:67–76

    PubMed  Google Scholar 

  • Hemborg C, Merilä J (1998) A sexual conflict in Collared Flycatchers, Ficedula albicollis: Early male moult reduces female fitness. Proc R Soc Lond B 265:2003–2007

    Article  Google Scholar 

  • Hemborg C, Sanz JJ, Lundberg A (2001) Effects of latitude on the trade-off between reproduction and moult: a long-term study with pied flycatchers. Oecologia 129:206–212

    Article  PubMed  Google Scholar 

  • Hobson HA, Wassenaar LI, Mil B, Lovette I, Dingle C, Smith TB (2003) Stable isotopes as indicators of altitudinal distributions and movements in an Ecuadorean hummingbird community. Oecologia 136:302–308

    Article  PubMed  Google Scholar 

  • Hudson WH (1918) Far away and long ago: a childhood in Argentina. Eland Books, London

    Google Scholar 

  • Inger R, Harrison XA, Ruxton JD, Newton J, Colhoun K, Gudmundsson GA, McElwaine G, Pickford M, Hodgson D, Bearhop S (2010) Carry-over effects reveal reproductive costs in a long-distance migrant. J Anim Ecol 79:974–982

    Article  PubMed  Google Scholar 

  • Jahn AE, Cueto VR (2012) The potential for comparative research across New World bird migration systems. J Ornithol 153:S199–S205

    Article  Google Scholar 

  • Jahn AE, Levey DJ, Mamani AM, Saldias M, Alcoba A, Ledezma MJ, Flores B, Vidoz JQ, Hilarion F (2010) Seasonal differences in rainfall, food availability, and the foraging behavior of Tropical Kingbirds in the southern Amazon Basin. J Field Ornithol 81(4):340–348

    Google Scholar 

  • Jahn AE, Levey DJ, Cueto VR, Ledezma JP, Tuero DT, Fox JW, Masson D (2013a) Long-distance bird migration within South America revealed by light-level geolocators. Auk 130:223–229

    Article  Google Scholar 

  • Jahn AE, Cueto VR, Fox JW, Husak MS, Kim DH, Landoll DV, Ledezma JP, LePage HK, Levey DJ, Murphy MT, Renfrew RB (2013b) Migration timing and wintering areas of three species of Tyrannus flycatchers breeding in the Great Plains of North America. Auk 130:247–257

    Article  Google Scholar 

  • Jahn AE, Tuero DT, Mamani AM, Bejarano V, Masson DA, Aguilar E (2014) Drivers of clutch-size in Fork-tailed Flycatchers (Tyrannus savana) at temperate and tropical latitudes in South America. Emu 114:337–342

    Article  Google Scholar 

  • Jahn AE, Giraldo JI, MacPherson M, Tuero DT, Sarasola JH, Cereghetti JF, Masson DA, Morales MV (2016a) Demographic variation in timing and intensity of feather molt in migratory Fork-tailed Flycatchers (Tyrannus s. savana). J Field Ornithol 87:143–154

    Article  Google Scholar 

  • Jahn AE, Seavy NE, Bejarano V, Benavides Guzmán M, CarvalhoProvinciato IC, Pizo MA, MacPherson M (2016b) Intra-tropical migration and wintering areas of Fork-tailed Flycatchers (Tyrannus savana) breeding in São Paulo, Brazil. Rev Bras Ornitol 24:116–121

    Google Scholar 

  • Jahn AE, Bejarano V, Benavides Guzmán M, Brown LM, CarvalhoProvinciato IC, Cereghetti J, Cueto VR, Giraldo JI, Gómez-Bahamón V, Husak MS, LePage HK, MacPherson MP, Marini MA, Pizo MA, Quickle A, Roeder DV, Sarasola JH, Tuero DT (2017) Molting while breeding? Lessons from new world Tyrannus flycatchers. J Ornithol 158:1061–1072

    Article  Google Scholar 

  • Jenni L, Winkler R (1994) Moult and ageing of European passerines. Academic, London

    Google Scholar 

  • Jiménez JE, Jahn AE, Rozzi R, Seavy NE (2016) First documented migration of individual white-crested elaenias (Elaenia albiceps chilensis) in South America. Wilson J Ornithol 128:419–425

    Article  Google Scholar 

  • Johnson EI, Stouffer PC, Bierregaard RO Jr (2012) The phenology of molting, breeding and their overlap in central Amazonian birds. J Avian Biol 43:141–154

    Article  Google Scholar 

  • Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:C489–C868

    Google Scholar 

  • Joseph L (1997) Towards a broader view of neotropical migrants: consequences of a re-examination of austral migration. Ornitol Neotrop 8:31–36

    Google Scholar 

  • Jahn AE, Guaraldo AC (2018) Do Fork-tailed Flycatchers (Tyrannus s. savana) stop to molt during fall migration? Brazilian J Ornithol 26:149–150

    Google Scholar 

  • Lessells CM (1986) Brood size in Canada geese: a manipulation experiment. J Anim Ecol 55:669–690

    Article  Google Scholar 

  • Levey DJ, Stiles FG (1992) Evolutionary precursors of long-distance migration: resource availability and movement patterns in neotropical land birds. Am Nat 140:447–476

    Article  Google Scholar 

  • Lindström Å (1991) Maximum fat deposition rates in migrating birds. Ornis Scand 22:12–19

    Article  Google Scholar 

  • Lindström Å, Visser GH, Daan S (1993) The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol Zool 66:490–510

    Article  Google Scholar 

  • Lustick S (1970) Energy requirement of molt in cowbirds. Auk 87:742–746

    Article  Google Scholar 

  • MacPherson MP (2017) Migration patterns in birds of the new world: seasonal, morphometric and physiological considerations. Dissertation, Tulane University

    Google Scholar 

  • MacPherson MP, Jahn AE, Murphy M, Kim DH, Cueto VR, Tuero DT, Hill ED (2018) Follow the rain? Environmental drivers of Tyrannus flycatcher migration across the New World. Auk 135:881–984

    Article  Google Scholar 

  • Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable–carbon isotopes. Science 282:1884–1886

    Article  CAS  PubMed  Google Scholar 

  • McWilliams SR, Kearney S, Karasov WH (2002) Dietary preferences of warblers for specific fatty acids in relation to nutritional requirements and digestive capabilities. J Avian Biol 33:167–174

    Article  Google Scholar 

  • McWilliams SR, Guglielmo C, Pierce BJ, Klaassen M (2004) Flying, fasting, and feeding in birds during migration: a nutritional and physiological ecology perspective. J Avian Biol 35:377–393

    Article  Google Scholar 

  • Merkord CL (2010) Seasonality and elevational migration in an Andean bird community. Dissertation, University of Missouri

    Google Scholar 

  • Mobley JM (2004) Fork-tailed Flycatcher Tyrannus savana. In: Del Hoyo J, Elliott A, Christie D (eds) Handbook of the birds of the world – Cotingas to pipits and wagtails. Lynx Editions, Barcelona, p 425

    Google Scholar 

  • Møller AP (1988) Female choice selects for male sexual tail ornaments in the monogamous swallow. Nature 332:640–642

    Article  Google Scholar 

  • Monaghan P, Nager RG (1997) Why don’t birds lay more eggs? Trends Ecol Evol 12:270–274

    Article  CAS  PubMed  Google Scholar 

  • Morales J, Moreno J, Merino S, Sanz JJ, Tomás G, Arriero E, Lobato E, Martínez de la Puente J (2007) Early moult improves local survival and reduces reproductive output in female pied flycatchers. Ecoscience 14:31–39

    Article  Google Scholar 

  • Morán-Tejeda E, Bazo J, López-Moreno JI, Aguilar E, Azorín-Molina C, Sanchez-Lorenzo A, Martínez R, Nieto JJ, Mejía R, Martín-Hernández N, Vicente-Serrano SM (2016) Climate trends and variability in Ecuador (1966-2011). Int J Climatol 36:3839–3855

    Article  Google Scholar 

  • Mumme RL (2018) The trade-off between molt and parental care in Hooded Warblers: simultaneous rectrix molt and uniparental desertion of late-season young. Auk 135:427–438

    Article  Google Scholar 

  • Murphy MT (1986) Body size and condition, timing of breeding, and aspects of egg production in Eastern Kingbirds. Auk 103:465–476

    Google Scholar 

  • Murphy MW, King JR (1992) Energy and nutrient use during moult by White-crowned sparrows Zonotrichia leucophrys gambelii. Ornis Scand 23:304–313

    Article  Google Scholar 

  • Myneni RB, Yang W, Nemani RR, Huete AR, Dickinson RE, Knyazikhin Y, Didan K, Fu R, Juárez RIN, Saatchi SS, Hashimoto H (2007) Large seasonal swings in leaf area of Amazon rainforests. PNAS 104:4820–4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton I (2008) The migration ecology of birds. Academic, London

    Google Scholar 

  • Newton I (2010) Bird migration. Collins, London

    Google Scholar 

  • Newton I (2011) Migration within the annual cycle: species, sex and age differences. J Ornithol 152(S1):S169–S185

    Article  Google Scholar 

  • Nilsson J, Svensson E (1996) The cost of reproduction: a new link between current reproductive effort and future reproductive success. Proc R Soc Lond B 263:711–714

    Article  Google Scholar 

  • Ortiz D, Capllonch P (2011) La migración del Chingolo (Zonotrichia capensis) en Argentina. Historia Natural. Tercera Serie (I), pp 105–109

    Google Scholar 

  • Osman M, Vera CS (2017) Climate predictability and prediction skill on seasonal time scales over South America from CHFP models. Clim Dyn 49:2365–2383

    Article  Google Scholar 

  • Patrícia L, Morellato C, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of Atlantic rain forest trees: a comparative study. Biotropica 32:811–823

    Article  Google Scholar 

  • Pennycuick CJ (2008) Modelling the flying bird. Academic, California

    Google Scholar 

  • Pinheiro F, Diniz IR, Coelho D, Bandeira MPS (2002) Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol 27:132–136

    Article  Google Scholar 

  • Price ER (2010) Dietary lipid composition and avian migratory flight performance: development of a theoretical framework for avian fat storage. Comp Biochem Physiol A 157:297–309

    Article  CAS  Google Scholar 

  • Pyle P (1997) Identification guide to North American birds, part 1: Columbidae to Ploceidae. Slate Creek Press, California

    Google Scholar 

  • Ramenofsky M (2010) Behavioral endocrinology of migration. Encycl Anim Behav 1:191–199

    Article  Google Scholar 

  • Rappole JH (2013) The avian migrant. Columbia University Press, New York

    Book  Google Scholar 

  • Renfrew R, Kim D, Perlut N, Smith J, Fox J, Marra PP (2013) Phenological matching across hemispheres in a long-distance migratory bird. Divers Distrib 19:1008–1019

    Article  Google Scholar 

  • Rohwer S, Viggiano A, Marzluff JM (2011) Reciprocal tradeoffs between molt and breeding in albatrosses. Condor 113:61–70

    Article  Google Scholar 

  • Romero LM (2002) Seasonal changes in plasma glucocoricoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128:1–24

    Article  CAS  PubMed  Google Scholar 

  • Siikamaki P, Hovi M, Rättiet O (1994) A trade-off between current reproduction and moult in the Pied flycatcher—an experiment. Funct Ecol 8:587–593

    Article  Google Scholar 

  • Skrip MM, McWilliams SR (2016) Oxidative balance in birds: an atoms-to-organisms-to-ecology primer for ornithologists. J Field Ornithol 87:1–20

    Article  Google Scholar 

  • Smith RJ, Moore FR (2005) Arrival timing and seasonal reproductive performance in a long distance migratory land bird. Behav Ecol Sociobiol 57:231–239

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stotz DF, Fitzpatrick JW, Parker TA, Moskovits DK (1996) Neotropical birds: ecology and conservation. University of Chicago Press, Chicago

    Google Scholar 

  • Studds CE, Marra PP (2005) Nonbreeding habitat occupancy and population processes: an upgrade experiment with a migratory bird. Ecology 86:2380–2385

    Article  Google Scholar 

  • Stutchbury BJ, Siddiqui R, Applegate K, Hvenegaard GT, Mammenga P, Mickle N, Pearman M, Ray JD, Savage A, Shaheen T, Fraser KC (2016) Ecological causes and consequences of intratropical migration in temperate–breeding migratory birds. Am Nat 188(S1):S28–S40

    Article  PubMed  Google Scholar 

  • Swaddle JP, Witter MS (1997) The effects of molt on the flight performance, body mass, and behavior of European starlings (Sturnus vulgaris): an experimental approach. Can J Zool 75:1135–1146

    Article  Google Scholar 

  • Teul M, Piaskowski VD, Williams KM (2007) The breeding biology of the Fork-tailed Flycatcher (Tyrannus savana) in lowland pine savanna habitats in Belize. Ornitol Neotrop 18:47–59

    Google Scholar 

  • Tuero DT, Jahn AE, Husak MS, Roeder DV, Masson DA, Pucheta FM, Michels TJ, Quickle A, Vidoz JQ, Domínguez M, Reboreda JC (2018) Ecological determinants of Tyrannus flycatcher nestling growth at north and south-temperate latitudes. Auk 135:439–448

    Article  Google Scholar 

  • Tulp I, Schekkerman H (2008) Has prey availability for arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61:48–60

    Article  Google Scholar 

  • Vieillot LJP (1808) Histoirenaturelle des oiseaux de l’Amériqueseptentrionale, vol 1. Chez Desray, Paris, p 72

    Google Scholar 

  • Visser ME, Lessells CM (2001) The costs of egg production and incubation in great tits (Parus major). Proc R Soc Lond B 268:1271–1277

    Article  CAS  Google Scholar 

  • Wagner GN, Balfry SK, Higgs DA, Lall SP, Farrell AP (2004) Dietary fatty acid composition affects the repeat swimming performance of Atlantic salmon in seawater. Comp Biochem Physiol A 137:567–576

    Article  CAS  Google Scholar 

  • Wannes WA, Mhamdi B, Sriti J, Marzouk B (2010) Glycerolipid and fatty acid distribution in pericarp, seed and whole fruit oils of Myrtus communis var italica. Ind Crop Prod 31:77–83

    Article  CAS  Google Scholar 

  • Williams EV, Swaddle JP (2003) Moult, flight performance and wing beat kinematics during take-off in European starlings Sturnus vulgaris. J Avian Biol 34:371–378

    Article  Google Scholar 

  • Winkler DW, Gandoy FA, Areta JI, Iliff MJ, Rakhimberdiev E, Kardynal KJ, Hobson KA (2017) Long-distance range expansion and rapid adjustment of migration in a newly established population of barn swallows breeding in Argentina. Curr Biol 27:1080–1084

    Article  CAS  PubMed  Google Scholar 

  • Wolda H (1978) Seasonal fluctuations in rainfall, food and abundance of tropical insects. J Anim Ecol 47:369–381

    Article  Google Scholar 

  • Zimmer JT (1937) Studies of Peruvian birds. No. 27, Notes on the genera Muscivora, Tyrannus, Empidonomus, and Sirystes, with further notes on Knipolegus. American Museum Novitates; no. 962

    Google Scholar 

Download references

Acknowledgments

DTT is a research fellow of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). AEJ was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil (2012/17225-2) during the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Tomás Tuero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuero, D.T., Jahn, A.E., MacPherson, M. (2019). Bird Migration in South America: The Fork-tailed Flycatcher (Tyrannus savana) as a Case Study. In: Reboreda, J., Fiorini, V., Tuero, D. (eds) Behavioral Ecology of Neotropical Birds. Springer, Cham. https://doi.org/10.1007/978-3-030-14280-3_7

Download citation

Publish with us

Policies and ethics