Skip to main content

The Complementary Role of Activity Context in the Mental Workload Evaluation of Helicopter Pilots: A Multi-tasking Learning Approach

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1012))

Abstract

Manifestations of increasing mental demands may be related to the task’s context. Additionally, to fundamental physiological changes, the workload may be also characterized sometimes by contextual task-related elements. We aimed to investigate the workload of helicopter pilots and develop predictive models related to the tasks’ context. Eight pilots completed an unknown case-scenario (~1 h) in a helicopter simulator. The scenario included changing mission during flight and receiving/transferring an injured subject to the near hospital. We selected interesting scenario’s periods/“tasks” (e.g., searching hospital, urgent landing) where pilots gave oral evaluations (0–100). Performed tasks had various contexts. We developed a multitasking learning approach to “pool together” all tasks because some of them, although different, may carry useful information about others, so they should neither be merged nor be processed totally independently. Interestingly, it seems that physiological and contextual parameters change order of descriptive power, depending on the task.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Leplat, J.: Eléments pour une histoire de la notion de charge mentale. Charge mentale notion floue vrai problème. Octarès, Toulouse (2002, in French)

    Google Scholar 

  2. Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science: mental workload in ergonomics. Ergonomics 58, 1–17 (2015)

    Article  Google Scholar 

  3. Cain, B.: A review of the mental workload literature. Defence Research and Development Toronto, Canada (2007)

    Google Scholar 

  4. Chanquoy, L., Tricot, A., Sweller, J.: Qu’est-ce que la charge cognitive?. In: La Charge Cognitive: Théorie et Applications, pp. 11–32. Armand Colin (2007, in French)

    Google Scholar 

  5. Burian, B.K., et al.: Single-pilot workload management in entry-level jets. National Aeronautics and Space Administraion, Moffeett Field, CA, Ames Research Center (2013)

    Google Scholar 

  6. Falzon, P., Sauvagnac, C.: Charge de travail et stress, chap. 11. In: Ergonomie, p. 175. Presses Universitaires de France (2004)

    Google Scholar 

  7. De Waard, D.: The measurement of drivers’ mental workload. Groningen University, Traffic Research Center, Netherlands (1996)

    Google Scholar 

  8. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychol. Rev. 111, 1036–1060 (2004)

    Article  Google Scholar 

  9. Rizzo, L., Dondio, P., Delany, S.J., Longo, L.: Modeling mental workload via rule-based expert system: a comparison with NASA-TLX and workload profile. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 215–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44944-9_19

    Chapter  Google Scholar 

  10. Tsang, P.S., Vidulich, M.A.: Mental workload and situation awareness. In: Handbook of Human Factors and Ergonomics, pp. 243–268. Wiley, Hoboken (2006)

    Chapter  Google Scholar 

  11. Young, M.S., Stanton, N.A.: Taking the load off: investigations of how adaptive cruise control affects mental workload. Ergonomics 47, 1014–1035 (2004)

    Article  Google Scholar 

  12. Wilson, G.F., Eggemeier, F.T.: Mental workload measurement. In: International Encyclopedia of Ergonomics and Human Factors, vol. 1 (2006)

    Google Scholar 

  13. Paxion, J., Galy, E., Berthelon, C.: Mental workload and driving. Front. Psychol. 5, 1344 (2014)

    Article  Google Scholar 

  14. Yoshida, Y., Ohwada, H., Mizoguchi, F.: Extracting tendency and stability from time series and random forest for classifying a car driver’s cognitive load. In: 2014 IEEE 13th International Conference on Cognitive Informatics and Cognitive Computing, pp. 258–265. IEEE (2014)

    Google Scholar 

  15. Lee, Y.-H., Liu, B.-S.: Inflight workload assessment: comparison of subjective and physiological measurements. Aviat. Space Environ. Med. 74, 1078–1084 (2003)

    Google Scholar 

  16. Longo, L., Leva, M.C.: Human Mental Workload: Models and Applications. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0

    Book  Google Scholar 

  17. Wickens, C.D.: Mental workload: assessment, prediction and consequences. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 18–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_2

    Chapter  Google Scholar 

  18. Cahill, J., et al.: Adaptive automation and the third pilot: managing teamwork and workload in an airline cockpit. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 161–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_10

    Chapter  Google Scholar 

  19. Kramer, A.F.: Physiological metrics of mental workload: a review of recent progress. In: Multiple-Task Performance, pp. 279–328 (1991)

    Google Scholar 

  20. Brookhuis, K.A., van Driel, C.J.G., Hof, T., van Arem, B., Hoedemaeker, M.: Driving with a congestion assistant; mental workload and acceptance. Appl. Ergon. 40, 1019–1025 (2009)

    Article  Google Scholar 

  21. Dijksterhuis, C., Brookhuis, K.A., De Waard, D.: Effects of steering demand on lane keeping behaviour, self-reports, and physiology: a simulator study. Accid. Anal. Prev. 43, 1074–1081 (2011)

    Article  Google Scholar 

  22. Lew, R.: Assessing cognitive workload from multiple physiological measures using wavelets and machine learning (2014)

    Google Scholar 

  23. Solovey, E.T., Zec, M., Garcia Perez, E.A., Reimer, B., Mehler, B.: Classifying driver workload using physiological and driving performance data. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems - CHI 2014, pp. 4057–4066. ACM Press, New York (2014)

    Google Scholar 

  24. Besson, P., et al.: Effectiveness of physiological and psychological features to estimate helicopter pilots’ workload: a Bayesian network approach. IEEE Trans. Intell. Transp. Syst. 14, 1872–1881 (2013)

    Article  Google Scholar 

  25. Harrivel, A.R., et al.: Prediction of cognitive states during flight simulation using multimodal psychophysiological sensing. In: AIAA Information Systems-AIAA Infotech @ Aerospace, p. 1135. American Institute of Aeronautics and Astronautics, Reston (2017)

    Google Scholar 

  26. Moustafa, K., Luz, S., Longo, L.: Assessment of mental workload: a comparison of machine learning methods and subjective assessment techniques. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 30–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_3

    Chapter  Google Scholar 

  27. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. Adv. Neural. Inf. Process. Syst. 19, 41 (2007)

    Google Scholar 

  28. Stanton, N.A.: Hierarchical task analysis: developments, applications, and extensions. Appl. Ergon. 37, 55–79 (2006)

    Article  Google Scholar 

  29. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Advances in Psychology, pp. 139–183. Elsevier (1988)

    Google Scholar 

  30. Byers, J.C.: Traditional and raw task load index (TLX) correlations: are paired comparisons necessary? In: Advances in Industrial Ergonomics and Safety I, pp. 481–485. Taylor & Francis (1989)

    Google Scholar 

  31. Vermersch, P.: L’entretiens d’explicitation, 5th edn., ESF Éditeur, Issy-les-Moulineaux (2006, in French)

    Google Scholar 

  32. Brookhuis, K.A., de Waard, D.: Monitoring drivers’ mental workload in driving simulators using physiological measures. Accid. Anal. Prev. 42, 898–903 (2010)

    Article  Google Scholar 

  33. Bargiotas, I., et al.: On the importance of local dynamics in statokinesigram: a multivariate approach for postural control evaluation in elderly. PLoS ONE 13, e0192868 (2018)

    Article  Google Scholar 

  34. Audiffren, J., Bargiotas, I., Vayatis, N., Vidal, P.-P., Ricard, D.: A non linear scoring approach for evaluating balance: classification of elderly as fallers and non-fallers. PLoS ONE 11, e0167456 (2016)

    Article  Google Scholar 

  35. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B. (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Zhou, J., Chen, J., Ye, J.: Malsar: multi-task learning via structural regularization, vol. 21. Arizona State University (2011)

    Google Scholar 

  37. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  38. Gaudreau, P., Sanchez, X., Blondin, J.-P.: Positive and negative affective states in a performance-related setting. Eur. J. Psychol. Assess. 22, 240–249 (2006)

    Article  Google Scholar 

  39. Nickel, P., Nachreiner, F.: Sensitivity and diagnosticity of the 0.1-Hz component of heart rate variability as an indicator of mental workload. Hum. Factors J. Hum. Factors Ergon. Soc. 45, 575–590 (2003)

    Article  Google Scholar 

  40. Gabaude, C., Baracat, B., Jallais, C., Bonniaud, M., Fort, A.: Cognitive load measurement while driving. In: Human Factors: A View from an Integrative Perspective (2012)

    Google Scholar 

  41. Di Stasi, L.L., et al.: Risk behaviour and mental workload: multimodal assessment techniques applied to motorbike riding simulation. Transp. Res. Part F Traffic Psychol. Behav. 12, 361–370 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the partners of work-package 1.6, Cockpit centered on the crew and Method and tools for the assessment of the future cockpit for helicopters of the IKKY program, and in particular Serge Couvet, David Hartnagel, and Denis Demain for their very active participation. We also wish to express our gratitude to the French Gendarmerie air force and in particular the SAG Villacoublay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Bargiotas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bargiotas, I., Nicolaï, A., Vidal, PP., Labourdette, C., Vayatis, N., Buffat, S. (2019). The Complementary Role of Activity Context in the Mental Workload Evaluation of Helicopter Pilots: A Multi-tasking Learning Approach. In: Longo, L., Leva, M. (eds) Human Mental Workload: Models and Applications. H-WORKLOAD 2018. Communications in Computer and Information Science, vol 1012. Springer, Cham. https://doi.org/10.1007/978-3-030-14273-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14273-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14272-8

  • Online ISBN: 978-3-030-14273-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics