Skip to main content

Insights into the Molecular Mechanisms of Cholesterol Binding to the NPC1 and NPC2 Proteins

  • Chapter
  • First Online:
Direct Mechanisms in Cholesterol Modulation of Protein Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1135))

Abstract

In recent years, a growing number of studies have implicated the coordinated action of NPC1 and NPC2 in intralysosomal transport and efflux of cholesterol. Our current understanding of this process developed with just over two decades of research. Since the cloning of the genes encoding the NPC1 and NPC2 proteins, studies of the biochemical defects observed when either gene is mutated along with computational and structural studies have unraveled key steps in the underlying mechanism. Here, we summarize the major contributions to our understanding of the proposed cholesterol transport controlled by NPC1 and NPC2, and briefly discuss recent findings of cholesterol binding and transport proteins beyond NPC1 and NPC2. We conclude with key questions and major challenges for future research on cholesterol transport by the NPC1 and NPC2 proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CLR:

Cholesterol

CTD:

C-terminal domain

MLD:

Middle luminal domain

NPC:

Niemann-Pick Type C

NTD:

N-terminal domain

SSD:

Sterol sensing domain

References

  1. Yeagle PL. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985;822:267–87.

    Article  CAS  PubMed  Google Scholar 

  2. Yeagle PL. Modulation of membrane function by cholesterol. Biochimie. 1991;73:1303–10.

    Article  CAS  PubMed  Google Scholar 

  3. Gimpl G, Burger K, Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997;36:10959–74.

    Article  CAS  PubMed  Google Scholar 

  4. Goluszko P, Nowicki B. Membrane cholesterol: a crucial molecule affecting interactions of microbial pathogens with mammalian cells. Infect Immun. 2005;73:7791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramprasad OG, Srinivas G, Rao KS, Joshi P, Thiery JP, Dufour S, Pande G. Changes in cholesterol levels in the plasma membrane modulate cell signaling and regulate cell adhesion and migration on fibronectin. Cell Motil Cytoskeleton. 2007;64:199–216.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenhouse-Dantsker A, Mehta D, Levitan I. Regulation of Ion channels by membrane lipids. Compr Physiol. 2012;2:31–68.

    PubMed  Google Scholar 

  7. Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol. 2010;22:422–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berg JM, Tymczko JL, Stryer L. Section 26.3. The complex regulation of cholesterol biosynthesis takes place at several levels. In: Berg JM, et al., editors. Biochemistry. 7th ed. New York: W.H. Freeman; 2012. p. 770–9.

    Google Scholar 

  9. Afonso SM, Machado RM, Lavrador MS, Quintao ECR, Moore KJ, Lottenberg AM. Molecular pathways underlying cholesterol homeostasis. Nutrients. 2018;10:E760.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015;6:254–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goedeke L, Fernandez-Hernando C. Regulation of cholesterol homeostasis. Cell Mol Life Sci. 2012;69:915–30.

    Article  CAS  PubMed  Google Scholar 

  12. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.

    Article  CAS  PubMed  Google Scholar 

  13. Goldstein JL, Dana SE, Faust JR, Beaudet AL, Brown MS. Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein. Observations in cultured fibroblasts from a patient with cholesteryl ester storage disease. J Biol Chem. 1975;250:8487–95.

    CAS  PubMed  Google Scholar 

  14. Rosenbaum AI, Maxfield FR. Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem. 2011;116:789–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Niemann A. Ein unbekanntes Krankheitsbild. Jahrbuch für Kinderheilkunde, vol. 79. Berlin: Neue Folge; 1914. p. 1–10.

    Google Scholar 

  16. Pick L. Der Morbus Gaucher und die ihm ähnlichen Krankheiten (die lipoidzellige Splenohepatomegalie Typus Niemann und die diabetische Lipoidzellenhypoplasie der Milz), vol. 29. Berlin: Ergebnisse der Inneren Medizin und Kinderheilkunde; 1926. p. 519–627.

    Google Scholar 

  17. Pentchev PG, Comly ME, Kruth HS, Vanier MT, Wenger DA, Patel S, et al. A defect in cholesterol esterification in Niemann-Pick disease (type C) patients. Proc Natl Acad Sci U S A. 1985;82(23):8247–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pentchev PG, Comly ME, Kruth HS, Patel S, Proestel M, Weintroub H. The cholesterol storage disorder of the mutant BALB/c mouse. A primary genetic lesion closely linked to defective esterification of exogenously derived cholesterol and its relationship to human type C Niemann-Pick disease. J Biol Chem. 1986;261(6):2772–7.

    CAS  PubMed  Google Scholar 

  19. Pentchev PG, Kruth HS, Comly ME, Butler JD, Vanier MT, Wenger DA, Patel S. Type C Niemann-Pick disease. A parallel loss of regulatory responses in both the uptake and esterification of low density lipoprotein-derived cholesterol in cultured fibroblasts. J Biol Chem. 1986;261(35):16775–80.

    CAS  PubMed  Google Scholar 

  20. Vanier MT, Rodriguez-Lafrasse C, Rousson R, Gazzah N, Juge MC, Pentchev PG, Revol A, Louisot P, Type C. Niemann-Pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-derived cholesterol processing. Biochim Biophys Acta. 1991;1096:328–37.

    Article  CAS  PubMed  Google Scholar 

  21. Vanier MT, Wenger DA, Comly ME, Rousson R, Brady RO, Pentchev PG. Niemann-Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification. A collaborative study on 70 patients. Clin Genet. 1998;33:331–48.

    Article  Google Scholar 

  22. Fink JK, Filling-Katz MR, Sokol J, Cogan DG, Pikus A, Sonies B, Soong B, Pentchev PG, Comly ME, Brady RO. Clinical spectrum of Niemann-Pick disease type C. Neurology. 1989;39:1040–9.

    Article  CAS  PubMed  Google Scholar 

  23. Schiffmann R. Niemann-Pick disease type C. From bench to bedside. JAMA. 1996;276:561–4.

    Article  CAS  PubMed  Google Scholar 

  24. Vanier MT, Rodriguez-Lafrasse C, Rousson R, Duthel S, Harzer K, Pentchev PG, Revol A, Louisot P. Type C Niemann-Pick disease: biochemical aspects and phenotypic heterogeneity. Dev Neurosci. 1991;13:307–14.

    Article  CAS  PubMed  Google Scholar 

  25. Carstea ED, Polymeropoulos MH, Parker CC, Detera-Wadleigh SD, O’Neill RR, Patterson MC, Goldin E, Xiao H, Straub RE, Vanier MT. Linkage of Niemann-Pick disease type C to human chromosome 18. Proc Natl Acad Sci U S A. 1993;90:2002–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vanier MT, Duthel S, Rodriguez-Lafrasse C, Pentchev P, Carstea ED. Genetic heterogeneity in Niemann–Pick C disease: a study using somatic cell hybridization and linkage analysis. Am J Hum Genet. 1996;58:118–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997;277(5323):228–31.

    Article  CAS  PubMed  Google Scholar 

  28. Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R, et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science. 2000;290(5500):2298–301.

    Article  CAS  PubMed  Google Scholar 

  29. Davidson CD, Steven UW. Niemann-Pick Type C disease—pathophysiology and future perspectives for treatment. US Neurology. 2010;6:88–94.

    Article  Google Scholar 

  30. Crocker AC. The cerebral defect in Tay-Sachs disease and Niemann-Pick disease. J Neurochem. 1961;7:69–80.

    Article  CAS  PubMed  Google Scholar 

  31. Jones I, He X, Katouzian F, Darroch PI, Schuchman EH. Characterization of common SMPD1 mutations causing types A and B Niemann-Pick disease and generation of mutation-specific mouse models. Mol Genet Metab. 2008;95(3):152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vanier MT. Complex lipid trafficking in Niemann-Pick disease type C. J Inherit Metab Dis. 2015;38(1):187–99.

    Article  CAS  PubMed  Google Scholar 

  33. Pentchev PG. Niemann-Pick C research from mouse to gene. Biochim Biophys Acta. 2004;1685(1-3):3–7.

    Article  CAS  PubMed  Google Scholar 

  34. Patterson MC, Walkley SU. Niemann-Pick disease, type C and Roscoe Brady. Mol Genet Metab. 2017;120(1-2):34–7.

    Article  CAS  PubMed  Google Scholar 

  35. Adachi M, Volk BW, Schneck L. Animal model of human disease: Niemann-Pick Disease type C. Am J Pathol. 1976;85(1):229–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kruth HS, Comly ME, Butler JD, Vanier MT, Fink JK, Wenger DA, et al. Type C Niemann-Pick disease. Abnormal metabolism of low density lipoprotein in homozygous and heterozygous fibroblasts. J Biol Chem. 1986;261(35):16769–74.

    CAS  PubMed  Google Scholar 

  37. Liscum L, Faust JR. Low density lipoprotein (LDL)-mediated suppression of cholesterol synthesis and LDL uptake is defective in Niemann-Pick type C fibroblasts. J Biol Chem. 1987;262(35):17002–8.

    CAS  PubMed  Google Scholar 

  38. Elleder M, Jirasek A, Smid F, Ledvinova J, Besley GT. Niemann-Pick disease type C. Study on the nature of the cerebral storage process. Acta Neuropathol. 1985;66(4):325–36.

    Article  CAS  PubMed  Google Scholar 

  39. Kidder LH, Colarusso P, Stewart SA, Levin IW, Appel NM, Lester DS, et al. Infrared spectroscopic imaging of the biochemical modifications induced in the cerebellum of the Niemann-Pick type C mouse. J Biomed Opt. 1999;4(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  40. German DC, Quintero EM, Liang CL, Ng B, Punia S, Xie C, et al. Selective neurodegeneration, without neurofibrillary tangles, in a mouse model of Niemann-Pick C disease. J Comp Neurol. 2001;433(3):415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanaka J, Nakamura H, Miyawaki S. Cerebellar involvement in murine sphingomyelinosis: a new model of Niemann-Pick disease. J Neuropathol Exp Neurol. 1988;47(3):291–300.

    Article  CAS  PubMed  Google Scholar 

  42. Higashi Y, Murayama S, Pentchev PG, Suzuki K. Cerebellar degeneration in the Niemann-Pick type C mouse. Acta Neuropathol. 1993;85(2):175–84.

    Article  CAS  PubMed  Google Scholar 

  43. Sarna JR, Larouche M, Marzban H, Sillitoe RV, Rancourt DE, Hawkes R. Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J Comp Neurol. 2003;456(3):279–91.

    Article  PubMed  Google Scholar 

  44. Fu R, Yanjanin NM, Bianconi S, Pavan WJ, Porter FD. Oxidative stress in Niemann-Pick disease, type C. Mol Genet Metab. 2010;101(2-3):214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Klein A, Maldonado C, Vargas LM, Gonzalez M, Robledo F, Perez de Arce K, et al. Oxidative stress activates the c-Abl/p73 proapoptotic pathway in Niemann-Pick type C neurons. Neurobiol Dis. 2011;41(1):209–18.

    Article  CAS  PubMed  Google Scholar 

  46. Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med. 2008;14(11):1247–55.

    Article  CAS  PubMed  Google Scholar 

  47. Saez PJ, Orellana JA, Vega-Riveros N, Figueroa VA, Hernandez DE, Castro JF, et al. Disruption in connexin-based communication is associated with intracellular Ca(2)(+) signal alterations in astrocytes from Niemann-Pick type C mice. PLoS One. 2013;8(8):e71361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Byun K, Kim D, Bayarsaikhan E, Oh J, Kim J, Kwak G, et al. Changes of calcium binding proteins, c-Fos and COX in hippocampal formation and cerebellum of Niemann-Pick, type C mouse. J Chem Neuroanat. 2013;52:1–8.

    Article  CAS  PubMed  Google Scholar 

  49. Kennedy BE, LeBlanc VG, Mailman TM, Fice D, Burton I, Karakach TK, et al. Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann-Pick Type C1-deficient murine brain. PLoS One. 2013;8(12):e82685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Elrick MJ, Lieberman AP. Autophagic dysfunction in a lysosomal storage disorder due to impaired proteolysis. Autophagy. 2013;9(2):234–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cougnoux A, Cluzeau C, Mitra S, Li R, Williams I, Burkert K, et al. Necroptosis in Niemann-Pick disease, type C1: a potential therapeutic target. Cell Death Dis. 2016;7:e2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cologna SM, Cluzeau CV, Yanjanin NM, Blank PS, Dail MK, Siebel S, et al. Human and mouse neuroinflammation markers in Niemann-Pick disease, type C1. J Inherit Metab Dis. 2014;37(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  53. Zervas M, Dobrenis K, Walkley SU. Neurons in Niemann-Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J Neuropathol Exp Neurol. 2001;60(1):49–64.

    Article  CAS  PubMed  Google Scholar 

  54. German DC, Quintero EM, Liang C, Xie C, Dietschy JM. Degeneration of neurons and glia in the Niemann-Pick C mouse is unrelated to the low-density lipoprotein receptor. Neuroscience. 2001;105(4):999–1005.

    Article  CAS  PubMed  Google Scholar 

  55. Walkley SU, Suzuki K. Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim Biophys Acta. 2004;1685(1-3):48–62.

    Article  CAS  PubMed  Google Scholar 

  56. Kirchhoff C, Osterhoff C, Young L. Molecular cloning and characterization of HE1, a major secretory protein of the human epididymis. Biol Reprod. 1996;54(4):847–56.

    Article  CAS  PubMed  Google Scholar 

  57. Okamura N, Kiuchi S, Tamba M, Kashima T, Hiramoto S, Baba T, Dacheux F, Dacheux JL, Sugita Y, Jin YZ. A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim Biophys Acta. 1999;1438:377–87.

    Article  CAS  PubMed  Google Scholar 

  58. Friedland N, Liou HL, Lobel P, Stock AM. Structure of a cholesterol-binding protein deficient in Niemann–Pick type C2 disease. Proc Natl Acad Sci U S A. 2003;100:2512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ko DC, Binkley J, Sidow A, Scott MP. The integrity of a cholesterol-binding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels. Proc Natl Acad Sci U S A. 2003;100:2518–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sleat DE, Wiseman JA, El-Banna M, Price SM, Verot L, Shen MM, Tint GS, Vanier MT, Walkley SU, Lobel P. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci U S A. 2004;101:5886–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheruku SR, Xu Z, Dutia R, Lobel P, Storch J. Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J Biol Chem. 2006;281:31594–604.

    Article  CAS  PubMed  Google Scholar 

  62. McCauliff LA, Xu Z, Li R, Kodukula S, Ko DC, Scott MP, Kahn PC, Storch J. Multiple surface regions on the Niemann-Pick C2 protein facilitate intracellular cholesterol transport. J Biol Chem. 2015;290:27321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu S, Benoff B, Liou HL, Lobel P, Stock AM. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann–Pick type C2 disease. J Biol Chem. 2007;282:23525–31.

    Article  CAS  PubMed  Google Scholar 

  64. Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, et al. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science. 1997;277(5323):232–5.

    Article  CAS  PubMed  Google Scholar 

  65. Patterson MC, Vanier MT, Suzuki K, Morris JA, Carstea E, Neufeld EB, Blanchette-Mackie JE, Pentchev PG. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease, vol. III. New York: McGraw-Hill; 2001. p. 3611–33.

    Google Scholar 

  66. Watari H, Blanchette-Mackie EJ, Dwyer NK, Watari M, Neufeld EB, Patel S, Pentchev PG, Strauss JF III. Mutations in the leucine zipper motif and sterol-sensing domain inactivate the Niemann-Pick C1 glycoprotein. J Biol Chem. 1999;274:21861–6.

    Article  CAS  PubMed  Google Scholar 

  67. Ohgami N, Ko DC, Thomas M, Scott MP, Chang CC, Chang TY. Binding between the Niemann-Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc Natl Acad Sci U S A. 2004;101(34):12473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ioannou YA. Multidrug permeases and subcellular cholesterol transport. Nat Rev Mol Cell Biol. 2001;2:657–68.

    Article  CAS  PubMed  Google Scholar 

  69. Infante RE, Abi-Mosleh L, Radhakrishnan A, Dale JD, Brown MS, Goldstein JL. Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein. J Biol Chem. 2008;283:1052–63.

    Article  CAS  PubMed  Google Scholar 

  70. Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, Infante RE. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell. 2009;137:1213–24.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Infante RE, Radhakrishnan A, Abi-Mosleh L, Kinch LN, Wang ML, Grishin NV, Goldstein JL, Brown MS. Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J Biol Chem. 2008;283:1064–75.

    Article  CAS  PubMed  Google Scholar 

  72. Ohgane K, Karaki F, Dodo K, Hashimoto Y. Discovery of oxysterol-derived pharmacological chaperones for NPC1: implication for the existence of second sterol-binding site. Chem Biol. 2013;20:391–402.

    Article  CAS  PubMed  Google Scholar 

  73. Gong X, Qian H, Zhou X, Wu J, Wan T, Cao P, Huang W, Zhao X, Wang X, Wang P, Shi Y, Gao GF, Zhou Q, Yan N. Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell. 2016;165(6):1467–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li X, Wang J, Coutavas E, Shi H, Hao Q, Blobel G. Structure of human Niemann–Pick C1 protein. Proc Natl Acad Sci U S A. 2016;113:8212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci U S A. 2008;105:15287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang ML, Motamed M, Infante RE, Abi-Mosleh L, Kwon HJ, Brown MS, Goldstein JL. Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab. 2010;12:166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Deffieu MS, Pfeffer SR. Niemann-Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc Natl Acad Sci U S A. 2011;108:18932–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Estiu G, Khatri N, Wiest O. Computational studies of the cholesterol transport between NPC2 and the N-terminal domain of NPC1 (NPC1(NTD)). Biochemistry. 2013;52(39):6879–91.

    Article  CAS  PubMed  Google Scholar 

  79. Elghobashi-Meinhardt N. Niemann-Pick type C disease: a QM/MM study of conformational changes in cholesterol in the NPC1(NTD) and NPC2 binding pockets. Biochemistry. 2014;53:6603–14.

    Article  CAS  PubMed  Google Scholar 

  80. Li X, Saha P, Li J, Blobel G, Pfeffer SR. Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2. Proc Natl Acad Sci U S A. 2016;113:10079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li X, Lu F, Trinh MN, Schmiege P, Seemann J, Wang J, Blobel G. 3.3 Å structure of Niemann–Pick C1 protein reveals insights into the function of the C-terminal luminal domain in cholesterol transport. Proc Natl Acad Sci U S A. 2017;114(34):9116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wüstner D, Solanko K. How cholesterol interacts with proteins and lipids during its intracellular transport. Biochim Biophys Acta. 1848;2015:1908–26.

    Google Scholar 

  83. Xavier BM, Jennings WJ, Zein AA, Wang J, Lee JY. Structural snapshot of the cholesterol-transport ATP-binding cassette proteins. Biochem Cell Biol. 2018:1–10.

    Google Scholar 

  84. Litvinov DY, Savushkin EV, Dergunov AD. Intracellular and plasma membrane events in cholesterol transport and homeostasis. J Lipids. 2018;2018:3965054.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Maxfield FR, Iaea DB, Pipalia NH. Role of STARD4 and NPC1 in intracellular sterol transport. Biochem Cell Biol. 2016;94(6):499–506.

    Article  CAS  PubMed  Google Scholar 

  86. Soffientini U, Graham A. Intracellular cholesterol transport proteins: roles in health and disease. Clin Sci (Lond). 2016;130(21):1843–59.

    Article  CAS  Google Scholar 

  87. Du X, Brown AJ, Yang H. Novel mechanisms of intracellular cholesterol transport: oxysterol-binding proteins and membrane contact sites. Curr Opin Cell Biol. 2015;35:37–42.

    Article  CAS  PubMed  Google Scholar 

  88. Sandhu J, Li S, Fairall L, Pfisterer SG, Gurnett JE, Xiao X, et al. Aster proteins facilitate nonvesicular plasma membrane to ER cholesterol transport in mammalian cells. Cell. 2018;175(2):514–29.. e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, Tully MD, Mydock-McGrane L, Covey DF, Rambo RP, et al. Structural basis of Smoothened regulation by its extracellular domains. Nature. 2016;535:517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cooper MK, Wassif CA, Krakowiak PA, Taipale J, Gong R, Kelley RI, Porter FD, Beachy PA. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat Genet. 2003;33:508–13.

    Article  CAS  PubMed  Google Scholar 

  91. Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, Salic A. Cellular cholesterol directly activates smoothened in hedgehog signaling. Cell. 2016;166:1176–1187.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang P, Zheng S, Wierbowski BM, Kim Y, Nedelcu D, Aravena L, Liu J, Kruse AC, Salic A. Structural basis of smoothened activation in Hedgehog signaling. Cell. 2018;174:312–324.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luchetti G, Sircar R, Kong JH, Nachtergaele S, Sagner A, Byrne EF, Covey DF, Siebold C, Rohatgi R. Cholesterol activates the G-protein coupled receptor smoothened to promote Hedgehog signaling. Elife. 2016;5:e20304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Myers BR, Neahring L, Zhang Y, Roberts KJ, Beachy PA. Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium. Proc Natl Acad Sci U S A. 2017;114:E11141–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xiao X, Tang JJ, Peng C, Wang Y, Fu L, Qiu ZP, Xiong Y, Yang LF, Cui HW, He XL, et al. Cholesterol modification of smoothened is required for Hedgehog signaling. Mol Cell. 2017;66:154–162.e10.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang Y, Bulkley DP, Xin Y, Roberts KJ, Asarnow DE, Sharma A, et al. Structural basis for cholesterol transport-like activity of the Hedgehog receptor patched. Cell. 2018;175(5):1352–64.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qi X, Schmiege P, Coutavas E, Wang J, Li X. Structures of human Patched and its complex with native palmitoylated sonic hedgehog. Nature. 2018;560(7716):128–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu R, Lu P, Chu JW, Sharom FJ. Characterization of fluorescent sterol binding to purified human NPC1. J Biol Chem. 2009;284:1840–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephanie M. Cologna or Avia Rosenhouse-Dantsker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cologna, S.M., Rosenhouse-Dantsker, A. (2019). Insights into the Molecular Mechanisms of Cholesterol Binding to the NPC1 and NPC2 Proteins. In: Rosenhouse-Dantsker, A., Bukiya, A. (eds) Direct Mechanisms in Cholesterol Modulation of Protein Function. Advances in Experimental Medicine and Biology, vol 1135. Springer, Cham. https://doi.org/10.1007/978-3-030-14265-0_8

Download citation

Publish with us

Policies and ethics