Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels

  • Avia Rosenhouse-DantskerEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1135)


Inwardly rectifying potassium (Kir) channels play a variety of critical cellular roles including modulating membrane excitability in neurons, cardiomyocytes and muscle cells, and setting the resting membrane potential, heart rate, vascular tone, insulin release, and salt flow across epithelia. These processes are regulated by a variegated list of modulators. In particular, in recent years, cholesterol has been shown to modulate a growing number of Kir channels. Subsequent to the discovery that members of the Kir2 subfamily were down-regulated by cholesterol, we have shown that members of several other Kir subfamilies were also modulated by cholesterol. However, not all cholesterol sensitive Kir channels were down-regulated by cholesterol. Our recent studies focused on three Kir channels: Kir2.1 (IRK1), Kir3.2^ (GIRK2^) and Kir3.4* (GIRK4*). Among these, Kir2.1 was down-regulated by cholesterol whereas Kir3.2^ and Kir3.4* were both up-regulated by cholesterol. Despite the opposite impact of cholesterol on these Kir3 channels compared to Kir2.1, putative cholesterol binding sites in all three channels were identified in equivalent transmembrane domains. Interestingly, however, there are intriguing differences in the specific residues that interact with the cholesterol molecule in these Kir channels. Here we compare and contrast the molecular characteristics of the putative cholesterol binding sites in the three channels, and discuss the potential implications of the differences for the impact of cholesterol on ion channels.


Cholesterol Kir channels GIRK channels Ion channels Channel modulation Protein–lipid interaction 


  1. 1.
    Maguy A, Hebert TE, Nattel S. Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc Res. 2006;69:798–807.CrossRefGoogle Scholar
  2. 2.
    Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V. Cholesterol and ion channels. Subcell Biochem. 2010;51:509–49.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rosenhouse-Dantsker A, Mehta D, Levitan I. Regulation of ion channels by membrane lipids. Compr Physiol. 2012;2:3168.Google Scholar
  4. 4.
    Chan KW, Sui JL, Vivaudou M, Logothetis DE. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc Natl Acad Sci U S A. 1996;93:14193–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature. 1997;387:179–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Rosenhouse-Dantsker A, Leal-Pinto E, Logothetis DE, Levitan I. Comparative analysis of cholesterol sensitivity of Kir channels: Role of the CD loop. Channels. 2010;4:63–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Romanenko VG, Fang Y, Byfield F, Travis AJ, Vandenberg CA, Rothblat GH, Levitan I. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J. 2004;87:3850–61.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Deng W, Bukiya AN, Rodríguez-Menchaca AA, Zhang Z, Baumgarten CM, Logothetis DE, Levitan I, Rosenhouse-Dantsker A. Hypercholesterolemia induces up-regulation of KACh cardiac currents via a mechanism independent of phosphatidylinositol 4,5-bisphosphate and Gβγ. J Biol Chem. 2012;287:4925–35.CrossRefPubMedGoogle Scholar
  9. 9.
    Balajthy A, Hajdu P, Panyi G, Varga Z. Sterol regulation of voltage-gated K+ channels. Curr Top Membr. 2017;80:255–92.CrossRefPubMedGoogle Scholar
  10. 10.
    Bolotina V, Omelyanenko V, Heyes B, Ryan U, Bregestovski P. Variations of membrane cholesterol alter the kinetics of Ca2+-dependent K+ channels and membrane fluidity in vascular smooth muscle cells. Pflugers Arch. 1989;415:262–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Dopico AM, Bukiya AN, Singh AK. Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol. Pharmacol Ther. 2012;135:133–50.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wu CC, Su MJ, Chi JF, Chen WJ, Hsu HC, Lee YT. The effect of hypercholesterolemia on the sodium inward currents in cardiac myocyte. J Mol Cell Cardiol. 1995;27:1263–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Amsalem M, Poilbout C, Ferracci G, Delmas P, Padilla F. Membrane cholesterol depletion as a trigger of Nav1.9 channel-mediated inflammatory pain. EMBO J. 2018;37(8):e97349.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Toselli M, Biella G, Taglietti V, Cazzaniga E, Parenti M. Caveolin-1 expression and membrane cholesterol content modulate N-type calcium channel activity in NG108-15 cells. Biophys J. 2005;89:2443–57.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Levitan I, Christian AE, Tulenko TN, Rothblat GH. (2000) Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J Gen Physiol. 2000;115:405–16.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shlyonsky VG, Mies F, Sariban-Sohraby S. Epithelial sodium channel activity in detergent-resistant membrane microdomains. Am J Physiol Renal Physiol. 2003;284:F182–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Awayda MS, Awayda KL, Pochynyuk O, Bugaj V, Stockand JD, Ortiz RM. Acute cholesterol-induced anti-natriuretic effects: role of epithelial Na+ channel activity, protein levels, and processing. J Biol Chem. 2011;286:1683–95.CrossRefPubMedGoogle Scholar
  18. 18.
    Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS. Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem. 2000;275:11934–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Chubinskiy-Nadezhdin VI, Negulyaev YA, Morachevskaya EA. Cholesterol depletion-induced inhibition of stretch-activated channels is mediated via actin rearrangement. Biochem Biophys Res Commun. 2011;412:80–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem. 2017;292:6135–47.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yi A, Lin Y-F, Jan YN, Jan LY. Yeast screen for constitutively active mutant G protein–activated potassium channels. Neuron. 2001;29:657–67.CrossRefPubMedGoogle Scholar
  22. 22.
    Vivaudou M, Chan KW, Sui JL, Jan LY, Reuveny E, Logothetis DE. Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants. J Biol Chem. 1997;272:31553–60.CrossRefPubMedGoogle Scholar
  23. 23.
    Lundbaek JA, Andersen OS. Spring constants for channel-induced lipid bilayer deformations estimates using gramicidin channels. Biophys J. 1999;76:889–95.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lundbaek JA, Birn P, Hansen AJ, Andersen OS. Membrane stiffness and channel function. Biochemistry. 1996;35:3825–30.CrossRefPubMedGoogle Scholar
  25. 25.
    Rosenhouse-Dantsker A. Insights into the molecular requirements for cholesterol binding to ion channels. Curr Top Membr. 2017;80:187–208.CrossRefPubMedGoogle Scholar
  26. 26.
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 2007;318:1258–65.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wada T, Shimono K, Kikukawa T, Hato M, Shinya N, Kim SY, Kimura-Someya T, Shirouzu M, Tamogami J, Miyauchi S, Jung KH, Kamo N, Yokoyama S. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J Mol Biol. 2011;411(5):986–98.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu W, Wacker D, Gati C, Han GW, James D, Wang D, Nelson G, Weierstall U, Katritch V, Barty A, Zatsepin NA, Li D, Messerschmidt M, Boutet S, Williams GJ, Koglin JE, Seibert MM, Wang C, Shah ST, Basu S, Fromme R, Kupitz C, Rendek KN, Grotjohann I, Fromme P, Kirian RA, Beyerlein KR, White TA, Chapman HN, Caffrey M, Spence JC, Stevens RC, Cherezov V. Serial femtosecond crystallography of G protein-coupled receptors. Science. 2013;342:1521–4.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK. Structural insights into μ-opioid receptor activation. Nature. 2015;524(7565):315–21.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cheng RKY, Segala E, Robertson N, Deflorian F, Doré AS, Errey JC, Fiez-Vandal C, Marshall FH, Cooke RM. Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity. Structure. 2017;25:1275–85.CrossRefPubMedGoogle Scholar
  31. 31.
    Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE, Han GW, Lee MY, Pardon E, Steyaert J, Huang XP, Strachan RT, Tribo AR, Pasternak GW, Carroll FI, Stevens RC, Cherezov V, Katritch V, Wacker D, Roth BL. Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell. 2018;172:55–67.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Penmatsa A, Wang KH, Gouaux E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature. 2013;503:85–90.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532:334–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shinoda T, Ogawa H, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature. 2009;459:446–50.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Marsh D, Barrantes FJ. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc Natl Acad Sci U S A. 1978;75:4329–33.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jones OT, McNamee MG. Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry. 1988;27:2364–74.CrossRefPubMedGoogle Scholar
  37. 37.
    Addona GH, Sandermann H Jr, Kloczewiak MA, Husain SS, Miller KW. Where does cholesterol act during activation of the nicotinic acetylcholine receptor? Biochim Biophys Acta. 1998;1370:299–309.CrossRefPubMedGoogle Scholar
  38. 38.
    Barrantes FJ. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res Brain Res Rev. 2004;47:71–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Levitan I, Singh DK, Rosenhouse-Dantsker A. Cholesterol binding to ion channels. Front Physiol. 2014;5:65.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res. 2006;45:279–94.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang Z, Tóth B, Szollosi A, Chen J, Csanády L. Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation. eLife. 2018;7:e36409.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Romanenko VG, Rothblat GH, Levitan I. Modulation of endothelial inward rectifier K+ current by optical isomers of cholesterol. Biophys J. 2002;83:3211–22.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Addona GH, Sandermann H Jr, Kloczewiak MA, Miller KW. Low chemical specificity of the nicotinic acetylcholine receptor sterol activation site. Biochim Biophys Acta. 2003;1609:177–82.CrossRefPubMedGoogle Scholar
  44. 44.
    Singh DK, Rosenhouse-Dantsker A, Nichols CG, Enkvetchakul D, Levitan I. Direct regulation of prokaryotic Kir channel by cholesterol. J Biol Chem. 2009;284:30727–36.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    D’Avanzo N, Hyrc K, Enkvetchakul D, Covey DF, Nichols CG. Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol. PLoS One. 2011;6:e19393.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bukiya AN, Belani JD, Rychnovsky S, Dopico AM. Specificity of cholesterol and analogs to modulate BK channels points to direct sterol-channel protein interactions. J Gen Physiol. 2011;137:93–110.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Picazo-Juárez G, Romero-Suárez S, Nieto-Posadas A, Llorente I, Jara- Oseguera A, Briggs M, McIntosh TJ, Simon SA, Ladrón-de-Guevara E, Islas LD, Rosenbaum T. Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel. J Biol Chem. 2011;286:24966–76.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Covey DF. ent-Steroids. Novel tools for studies of signaling pathways. Steroids. 2009;74:577–85.CrossRefPubMedGoogle Scholar
  49. 49.
    Baier CJ, Fantini J, Barrantes FJ. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep. 2011;1:69.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins. An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol. 2013;4:31.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Bukiya AN, Rosenhouse-Dantsker A. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2. Biochim Biophys Acta Biomembr. 2017;1859:1233–41.CrossRefPubMedGoogle Scholar
  52. 52.
    Rosenhouse-Dantsker A, Noskov S, Durdagi S, Logothetis DE, Levitan I. Identification of novel cholesterol-binding regions in Kir2 channels. J Biol Chem. 2013;288:31154–64.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90:291–366.CrossRefPubMedGoogle Scholar
  54. 54.
    Reimann F, Ashcroft FM. Inwardly rectifying potassium channels. Curr Opin Cell Biol. 1999;11:503–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Bichet D, Haass FA, Jan LY. Merging functional studies with structures of inward-rectifier K+ channels. Nat Rev Neurosci. 2003;4:957–67.CrossRefPubMedGoogle Scholar
  56. 56.
    Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev. 2005;57:509–26.CrossRefPubMedGoogle Scholar
  57. 57.
    Nichols C, Lopatin A. Inward rectifier potassium channels. Annu Rev Physiol. 1997;59:268–77.CrossRefGoogle Scholar
  58. 58.
    Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, et al. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature. 1993;362:31–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Dascal N, Schreibmayer W, Lim NF, Wang W, Chavkin C, DiMagno L, et al. Atrial G protein-activated K+ channel: Expression cloning and molecular properties. Proc Natl Acad Sci U S A. 1993;90:10235–9.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kubo Y, Baldwin TJ, Jan YN, Jan LY. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature. 1993;362:127–33.CrossRefPubMedGoogle Scholar
  61. 61.
    Nishida M, Cadene M, Chait BT, MacKinnon R. Crystal structure of a Kir3.1- prokaryotic Kir channel chimera. EMBO J. 2007;26:4005–15.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Tao X, Avalos JL, Chen J, MacKinnon R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science. 2009;326:1668–74.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Whorton MR, MacKinnon R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell. 2011;147:199–208.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Li N, Wu JX, Ding D, Cheng J, Gao N, Chen L. Structure of a Pancreatic ATP-Sensitive Potassium Channel. Cell. 2017;168:101–10.CrossRefPubMedGoogle Scholar
  65. 65.
    Lee KPK, Chen J, MacKinnon R. Molecular structure of human KATP in complex with ATP and ADP. Elife. 2017;6:e32481.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tikku S, Epshtein Y, Collins H, Travis AJ, Rothblat GH, Levitan I. Relationship between Kir2.1/Kir2.3 activity and their distributions between cholesterol-rich and cholesterol-poor membrane domains. Am J Physiol Cell Physiol. 2007;293:C440–50.CrossRefPubMedGoogle Scholar
  67. 67.
    Chen X, Johnston D. Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons. J Neurosci. 2005;25:3787–92.CrossRefPubMedGoogle Scholar
  68. 68.
    VanDongen AM, Codina J, Olate J, Mattera R, Joho R, Birnbaumer L, Brown AM. Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science. 1988;242:1433–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Leaney JL. Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neurons. Eur J Neurosci. 2003;18:2110–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Slesinger PA, Patil N, Liao YJ, Jan YN, Jan LY, Cox DR. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron. 1996;16:321–31.CrossRefPubMedGoogle Scholar
  71. 71.
    Inanobe A, Yoshimoto Y, Horio Y, Morishige KI, Hibino H, Matsumoto S, Tokunaga Y, Maeda T, Hata Y, Takai Y, Kurachi Y. Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J Neurosci. 1999;19:1006–17.CrossRefPubMedGoogle Scholar
  72. 72.
    Rubinstein M, Peleg S, Berlin S, Brass D, Keren-Raifman T, Dessauer CW, Ivanina T, Dascal N. Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma. J Physiol. 2009;587(Pt 14):3473–91.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Logothetis DE, Jin T, Lupyan D, Rosenhouse-Dantsker A. Phosphoinositide-mediated gating of inwardly rectifying K(+) channels. Pflugers Arch. 2007;455:83–95.CrossRefPubMedGoogle Scholar
  74. 74.
    Hansen SB, Tao X, MacKinnon R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature. 2011;477:495–8.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Schmidt MR, Stansfeld PJ, Tucker SJ, Sansom MS. Simulation-based prediction of phosphatidylinositol 4,5-bisphosphate binding to an ion channel. Biochemistry. 2013;52:279–81.CrossRefPubMedGoogle Scholar
  76. 76.
    Yeagle PL. Non-covalent binding of membrane lipids to membrane proteins. Biochim Biophys Acta. 2014;1838:1548–59.CrossRefPubMedGoogle Scholar
  77. 77.
    Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EYT, Velasquez J, Kuhn P, Stevens RC. A specific cholesterol binding site is established by the 2.8Å structure of the human β-adrenergic receptor. Structure. 2008;16:897–905.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature. 2012;485:321–6.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, Jzerman AP, Cherezov V, Stevens RC. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012;337:232–6.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY, Liu W, Xu HE, Cherezov V, Roth BL, Stevens RC. Structural features for functional selectivity at serotonin receptors. Science. 2013;340:615–9.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM. Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+ (BK) channels. J Biol Chem. 2012;287:20509–21.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Epshtein Y, Chopra AP, Rosenhouse-Dantsker A, Kowalsky GB, Logothetis DE, Levitan I. Identification of cholesterol sensitive domain in the C-terminus of Kir2.1 channels. Proc Natl Acad Sci U S A. 2009;106:8055–60.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R. The open pore conformation of potassium channels. Nature. 2002;417:523–6.CrossRefPubMedGoogle Scholar
  85. 85.
    Jin T, Peng L, Mirshahi T, Rohacs T, Chan KW, Sanchez R, Logothetis DE. The βγ subunits of G proteins gate a K+ channel by pivoted bending of a transmembrane segment. Mol Cell. 2002;10:469–81.CrossRefPubMedGoogle Scholar
  86. 86.
    Rosenhouse-Dantsker A, Logothetis DE. New roles for a key glycine and its neighboring residue in potassium channel gating. Biophys J. 2006;91:2860–73.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Rosenhouse-Dantsker A. Cholesterol-binding sites in GIRK channels: the devil is in the details. Lipid Insights. 2018;11:1178635317754071.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations