Effects of Cholesterol on GPCR Function: Insights from Computational and Experimental Studies

  • Sofia Kiriakidi
  • Antonios Kolocouris
  • George Liapakis
  • Saima Ikram
  • Serdar DurdagiEmail author
  • Thomas MavromoustakosEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1135)


The extensive experimental and computational evidences revealed that cholesterol is involved in the drug binding to G protein-coupled receptor (GPCR) targets that is influenced by the membrane environment and external functions. These multifunctional factors make the understanding of the molecular mechanism of action in greater detail an entirely difficult task. Significant efforts have been made for better understanding the role of multi-directional specific, receptor-dependent interactions of cholesterol, and its effects on drug design and development. Additional efforts must be made in this complex system in order to shed more light on cholesterol molecular basis of action. The results of molecular simulations that complemented experimental data may reveal new aspects of GPCR-cholesterol interactions and may provide a comprehensive understanding of receptor function.


GPCRs Cholesterol Membrane bilayers Cholesterol recognition interaction amino acid consensus (CRAC) Multi-scale simulations 


  1. 1.
    Grouleff J, Sheeba JI, Katrine KS, SchiØtt B. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta. 2015;1848:1783–95.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhu C, Ichetovkin M, Kurz M, Zycband E, Kawka D, Woods J, He X, Plump A, Hailman E. Cholesterol in human atherosclerotic plaque is a marker for underlying disease state and plaque vulnerability. Lipids Health Dis. 2010;9:61.CrossRefGoogle Scholar
  3. 3.
    Chattopadhyay A, Epand RM, editors. Properties and functions of cholesterol. Chem Phys Lipids. 2016;199:1–186.Google Scholar
  4. 4.
    Genheden S, Jonathan WE, Lee AG. G protein coupled receptor interactions with cholesterol deep in the membrane. Biochim Biophys Acta. 2017;1859:268–81.CrossRefGoogle Scholar
  5. 5.
    Durba S, Xavier P, Mohole M, Chattopadhyay A. Exploring GPCR−lipid interactions by molecular dynamics simulations: excitements, challenges, and the way forward. J Phys Chem B. 2018;122:5727–37.CrossRefGoogle Scholar
  6. 6.
    Guixà-González R, Albasanz JL, Rodriguez-Espigares I, Pastor M, Sanz F, Martí-Solano M, Manna M, Martinez-Seara H, Hildebrand PW, Martín M, Selent J. Membrane cholesterol access into a G-protein-coupled receptor. Nat Commun. 2017;8:1–12.CrossRefGoogle Scholar
  7. 7.
    Dahl JS, Dahl CE, Bloch K. Sterol in membranes: growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol. Biochemistry. 1980;19:1467–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Marquardta D, Kǔcerkac N, Wassalle SR, Harrounf TA, Katsaras J. Cholesterol’s location in lipid bilayers. Chem Phys Lipids. 2016;199:17–25.CrossRefGoogle Scholar
  9. 9.
    Genheden G, Essex JW, Lee AG. G protein coupled receptor interactions with cholesterol deep in the membrane. Biochim Biophys Acta. 2017;1859:268–81.CrossRefGoogle Scholar
  10. 10.
    Harroun TA, Katsaras J, Wassall SR. Cholesterol hydroxyl group is found to reside in the center of a polyunsaturated lipid membrane. Biochemistry. 2006;45:1227–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Marrink SJ, de Vries AH, Harroun TA, Katsaras J, Wassall SR. Cholesterol shows preference for the interior of polyunsaturated lipid membranes. J Am Chem Soc. 2008;130:10–1.CrossRefPubMedGoogle Scholar
  12. 12.
    Kucerka N, Perlmutter JD, Pan J, Tristram-Nagle S, Katsaras J, Sachs JN. The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and x-ray scattering. Biophys J. 2008;95:2792–805.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bennett WFD, MacCallum JL, Hinner MJ, Marrink SJ, Tieleman DP. Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. J Am Chem Soc. 2009;131:12714–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Song YL, Kenworthy AK, Sanders CR. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Sci. 2014;23:1–22.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Garcίa-Aribas AB, Alonso A, Goñi FM. Cholesterol interactions with ceramide and sphingomyelin. Chem Phys Lipids. 2016;199:26–34.CrossRefGoogle Scholar
  16. 16.
    Brzustowicz MR, Cherezov V, Zerouga M, Caffrey M, Stillwell W, Wassall SR. Controlling membrane cholesterol content. A role for polyunsaturated (docosahexaenoate) phospholipids. Biochemistry. 2002;41:12509–19.CrossRefPubMedGoogle Scholar
  17. 17.
    Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–63.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sengupta D, Prasanna X, Madhura M, Chattopadhyay A. Exploring GPCR−lipid interactions by molecular dynamics simulations: excitements, challenges, and the way forward. J Phys Chem B. 2018;122:5727–37.CrossRefPubMedGoogle Scholar
  19. 19.
    Sengupta D, Chattopadhyay A. Identification of cholesterol binding sites in the 645 serotonin1A receptor. J Phys Chem B. 2012;116:12991–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Gimpl G. Interaction of G protein coupled receptors and cholesterol. Chem Phys Lipids. 2016;199:61–73.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kellici TF, Tzakos AG, Mavromoustakos T. Rational design and synthesis of molecules targeting the angiotensin II Type 1 and Type 2 receptors. Molecules. 2015;20:3868–97.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hodzic A, Zoumpoulakis P, Pabst G, Mavromoustakos T, Rappolt M. Losartan’s affinity to fluid bilayers couples to lipid/cholesterol interactions. Phys Chem Chem Phys. 2012;14:4780–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Sengupta D, Chattopadhyay A. Molecular dynamics simulations of GPCR–cholesterol interaction: an emerging paradigm. Biochim Biophys Acta. 2015;1848:1775–82.CrossRefPubMedGoogle Scholar
  24. 24.
    Roopali S, Chattopadhyay A. Membrane cholesterol stabilizes the human serotonin1A receptor. Biochim Biophys Acta. 2012:2936–42.Google Scholar
  25. 25.
    Navratil AM, Bliss SP, Berghorn KA, Haughian JM, Farmerie TA, Graham JK, Clay CM, Roberson MS. Constitutive localization of the gonadotropin-releasing hormone (GnRH) receptor to low density membrane microdomains is necessary for GnRH signaling to ERK. J Biol Chem. 2003;278:31593–602.CrossRefPubMedGoogle Scholar
  26. 26.
    Monastyrskaya K, Hostettler A, Buergi S, Draeger A. The NK1 receptor localizes to the plasma membrane microdomains, and its activation is dependent on lipid raft integrity. J Biol Chem. 2005;280:7135–46.CrossRefPubMedGoogle Scholar
  27. 27.
    Jafurulla MD, Bhagyashree DR, Sugunan S, Jean-Marie R, Covey DF, Chattopadhyaya A. Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. Biochim Biophys Acta. 2014;1838:158–63.CrossRefPubMedGoogle Scholar
  28. 28.
    Paila YD, Shrish T, Sengupta D, Chattopadhyay A. Molecular modeling of the human serotonin1A receptor: role of membrane cholesterol in ligand binding of the receptor. Mol Biosyst. 2011;7:224–34.CrossRefPubMedGoogle Scholar
  29. 29.
    Sengupta D, Chattopadhyay A. Identification of cholesterol binding sites in the serotonin1A receptor. J Phys Chem B. 2012;116:12991–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High resolution crystal structure of an engineered human beta 2 adrenergic G-protein coupled receptoer. Science. 2007;318:1258–65.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Liu W, et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012;337:232–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Batyuk A, Galli L, Ishchenko A, Han GW, Gati C, Popov PA, Lee MY, Stauch B, White TA, Barty A, Aquila A, Hunter MS, Lian M, Boutet S, Pu M, Liu ZJ, Nelson G, James D, Li C, Zhao Y, Spence JC, Liu W, Fromme P, Katritch V, Weierstall U, Stevens RC, Cherezov V. Native phasing of x-ray free-electron laser data for a G protein–coupled receptor. Sci Adv. 2016;2:e1600292.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lyman E, et al. A role for a specific cholesterol interaction in stabilizing the Apo configuration of the human A2A adenosine receptor. Structure. 2009;17:1660–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lee JYJ, Lyman E. Predictions for cholesterol interaction sites on the A2A adenosine receptor. J Am Chem Soc. 2012;134:16512–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Rouviere E, Arnarez C, Yang L, Lyman E. Identification of two new cholesterol interaction sites on the A2A adenosine receptor. Biophys J. 2017;113:2415–24.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Song Y, Kenwirthy AK, Sanders CR. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Sci. 2014;23:1–22.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wanling S, Hsin-Yen Y, Robinson CV, Samson MSP. State Dependent lipid interactions with the a2α receptor revealed by md simulations using in vivo–mimetic membranes. doi:
  38. 38.
    Durdagi S, Erol I, Ekhteiari Salmas R, Aksoydan B, Kantarcioglu I. Oligomerization and cooperativity in GPCRs from the perspective of the angiotensin AT1 and dopamine D2 receptors. Neurosci Lett. 2018; Scholar
  39. 39.
    Durdagi S, Aksoydan B, Erol I, Kantarcioglu I, Ergun Y, Bulut G, Acar M, Avsar T, Liapakis G, Karageorgos V, Ekhteiari Salmas R, Sergi B, Alkhatib S, Turan G, Yigit BN, Cantasir K, Kurt B, Kilic T. Integration of multi-scale molecular modeling approaches with experiments for the in silico guided design and discovery of novel herg-neutral antihypertensive oxazalone and imidazolone derivatives and analysis of their potential restrictive effects on cell proliferation. Eur J Med Chem. 2018;145:273–90.CrossRefPubMedGoogle Scholar
  40. 40.
    Ekhteiari Salmas R, Seeman P, Aksoydan B, Erol I, Kantarcioglu I, Stein M, Yurtsever M, Durdagi S. Analysis of the glutamate agonist LY404,039 binding to non-static dopamine receptor D2 dimer structures and consensus docking. ACS Chem Nerosci. 2017;8:1404–15.CrossRefGoogle Scholar
  41. 41.
    Ekhteiari Salmas R, Seeman P, Aksoydan B, Stein M, Yurtsever M, Durdagi S. Biological insights of the dopaminergic stabilizer ACR16 at the binding pocket of dopamine D2 receptor. ACS Chem Nerosci. 2017;8:826–36.CrossRefGoogle Scholar
  42. 42.
    Durdagi S, Ekhteiari Salmas R, Stein M, Yurtsever M, Seeman P. Binding interactions of dopamine and apomorphine in d2high and d2low states of human dopamine d2 receptor (d2r) using computational and experimental techniques. ACS Chem Neurosci. 2016;7:185–95.CrossRefPubMedGoogle Scholar
  43. 43.
    Ayoub MA, Zhang Y, Kelly RS, et al. Functional interaction between angiotensin II receptor type 1 and chemokine (C-C motif) receptor 2 with implications for chronic kidney disease. PLoS One. 2015;10:e0119803.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ferré S. The GPCR heterotetramer: challenging classical pharmacology. Trends Pharmacol Sci. 2015;36:145–52.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 2004;5:30–4.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Oates J, Watts A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol. 2011;21:802–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Zheng H, Pearsall EA, Hurst DP, Zhang Y, Chu J, Zhou Y, Reggio PH, Loh HH, Law P-Y. Palmitoylation and membrane cholesterol stabilize μ-Opioid receptor homodimerization and G protein coupling. BMC Cell Biol. 2012;13:6.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sengupta D, Kumar GA, Chattopadhyay A. Chapter 16. Interaction of membrane cholesterol with GPCRs: implications in receptor oligomerization. In: Herrick-Davis K, et al., editors. G-protein-coupled receptor dimers, the receptors 33: Springer International Publishing AG; 2017. p. 415.
  49. 49.
    Goddard AD, Watts A. Regulation of G protein-coupled receptors by palmitoylation and cholesterol. BMC Biol. 2012;10:27.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Periole X. Interplay of G protein-coupled receptors with the membrane: insights from supra-atomic coarse grain molecular dynamics simulations. Chem Rev. 2017;117:156–85.CrossRefPubMedGoogle Scholar
  51. 51.
    Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem. 2017;292:6135–47.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bolivar JH, Muñoz-García JC, Castro-Dopico T, Dijkman PM, Stansfeld PJ, Watts A. Interaction of lipids with the neurotensin receptor 1. Biochim Biophys Acta. 2016;1858:1278–87.CrossRefPubMedGoogle Scholar
  53. 53.
    Chakraborty H, Amitabha Chattopadhyay A. Excitements and challenges in GPCR oligomerization: molecular insight from FRET. ACS Chem Nerosci. 2015;6:199–206.CrossRefGoogle Scholar
  54. 54.
    Gupta K, Donlan JA, Hopper JT, Uzdavinys P, Landreh M, Struwe WB, Drew D, Baldwin AJ, Stansfeld PJ, Robinson CV. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature. 2017;541:421–4.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gault J, Donlan JA, Liko I, Hopper JT, Gupta K, Housden N, Struwe WB, Marty MT, Mize T, Bechara C, Zhu Y, Wu B, Kleanthous C, Belov M, Damoc E, Makarov A, Robinson CV. High resolution mass spectrometry of small molecules bound to membrane proteins. Nat Methods. 2016;13:333–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sofia Kiriakidi
    • 1
  • Antonios Kolocouris
    • 2
  • George Liapakis
    • 3
  • Saima Ikram
    • 4
  • Serdar Durdagi
    • 4
    Email author
  • Thomas Mavromoustakos
    • 1
    Email author
  1. 1.Laboratory of Organic Chemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
  2. 2.Section of Pharmaceutical Chemistry, Department of PharmacySchool of Health Sciences, National and Kapodistrian University of AthensAthensGreece
  3. 3.Department of PharmacologySchool of Medicine, University of Crete, HeraklionCreteGreece
  4. 4.Computational Biology and Molecular Simulations Laboratory, Department of BiophysicsSchool of Medicine, Bahcesehir UniversityIstanbulTurkey

Personalised recommendations