Skip to main content

Effects of Cholesterol on GPCR Function: Insights from Computational and Experimental Studies

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1135))

Abstract

The extensive experimental and computational evidences revealed that cholesterol is involved in the drug binding to G protein-coupled receptor (GPCR) targets that is influenced by the membrane environment and external functions. These multifunctional factors make the understanding of the molecular mechanism of action in greater detail an entirely difficult task. Significant efforts have been made for better understanding the role of multi-directional specific, receptor-dependent interactions of cholesterol, and its effects on drug design and development. Additional efforts must be made in this complex system in order to shed more light on cholesterol molecular basis of action. The results of molecular simulations that complemented experimental data may reveal new aspects of GPCR-cholesterol interactions and may provide a comprehensive understanding of receptor function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grouleff J, Sheeba JI, Katrine KS, SchiØtt B. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta. 2015;1848:1783–95.

    Article  CAS  PubMed  Google Scholar 

  2. Zhu C, Ichetovkin M, Kurz M, Zycband E, Kawka D, Woods J, He X, Plump A, Hailman E. Cholesterol in human atherosclerotic plaque is a marker for underlying disease state and plaque vulnerability. Lipids Health Dis. 2010;9:61.

    Article  Google Scholar 

  3. Chattopadhyay A, Epand RM, editors. Properties and functions of cholesterol. Chem Phys Lipids. 2016;199:1–186.

    Google Scholar 

  4. Genheden S, Jonathan WE, Lee AG. G protein coupled receptor interactions with cholesterol deep in the membrane. Biochim Biophys Acta. 2017;1859:268–81.

    Article  CAS  Google Scholar 

  5. Durba S, Xavier P, Mohole M, Chattopadhyay A. Exploring GPCR−lipid interactions by molecular dynamics simulations: excitements, challenges, and the way forward. J Phys Chem B. 2018;122:5727–37.

    Article  Google Scholar 

  6. Guixà-González R, Albasanz JL, Rodriguez-Espigares I, Pastor M, Sanz F, Martí-Solano M, Manna M, Martinez-Seara H, Hildebrand PW, Martín M, Selent J. Membrane cholesterol access into a G-protein-coupled receptor. Nat Commun. 2017;8:1–12.

    Article  Google Scholar 

  7. Dahl JS, Dahl CE, Bloch K. Sterol in membranes: growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol. Biochemistry. 1980;19:1467–72.

    Article  CAS  PubMed  Google Scholar 

  8. Marquardta D, Kǔcerkac N, Wassalle SR, Harrounf TA, Katsaras J. Cholesterol’s location in lipid bilayers. Chem Phys Lipids. 2016;199:17–25.

    Article  Google Scholar 

  9. Genheden G, Essex JW, Lee AG. G protein coupled receptor interactions with cholesterol deep in the membrane. Biochim Biophys Acta. 2017;1859:268–81.

    Article  CAS  Google Scholar 

  10. Harroun TA, Katsaras J, Wassall SR. Cholesterol hydroxyl group is found to reside in the center of a polyunsaturated lipid membrane. Biochemistry. 2006;45:1227–33.

    Article  CAS  PubMed  Google Scholar 

  11. Marrink SJ, de Vries AH, Harroun TA, Katsaras J, Wassall SR. Cholesterol shows preference for the interior of polyunsaturated lipid membranes. J Am Chem Soc. 2008;130:10–1.

    Article  CAS  PubMed  Google Scholar 

  12. Kucerka N, Perlmutter JD, Pan J, Tristram-Nagle S, Katsaras J, Sachs JN. The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and x-ray scattering. Biophys J. 2008;95:2792–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bennett WFD, MacCallum JL, Hinner MJ, Marrink SJ, Tieleman DP. Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. J Am Chem Soc. 2009;131:12714–20.

    Article  CAS  PubMed  Google Scholar 

  14. Song YL, Kenworthy AK, Sanders CR. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Sci. 2014;23:1–22.

    Article  PubMed  Google Scholar 

  15. Garcίa-Aribas AB, Alonso A, Goñi FM. Cholesterol interactions with ceramide and sphingomyelin. Chem Phys Lipids. 2016;199:26–34.

    Article  Google Scholar 

  16. Brzustowicz MR, Cherezov V, Zerouga M, Caffrey M, Stillwell W, Wassall SR. Controlling membrane cholesterol content. A role for polyunsaturated (docosahexaenoate) phospholipids. Biochemistry. 2002;41:12509–19.

    Article  CAS  PubMed  Google Scholar 

  17. Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sengupta D, Prasanna X, Madhura M, Chattopadhyay A. Exploring GPCR−lipid interactions by molecular dynamics simulations: excitements, challenges, and the way forward. J Phys Chem B. 2018;122:5727–37.

    Article  CAS  PubMed  Google Scholar 

  19. Sengupta D, Chattopadhyay A. Identification of cholesterol binding sites in the 645 serotonin1A receptor. J Phys Chem B. 2012;116:12991–6.

    Article  CAS  PubMed  Google Scholar 

  20. Gimpl G. Interaction of G protein coupled receptors and cholesterol. Chem Phys Lipids. 2016;199:61–73.

    Article  CAS  PubMed  Google Scholar 

  21. Kellici TF, Tzakos AG, Mavromoustakos T. Rational design and synthesis of molecules targeting the angiotensin II Type 1 and Type 2 receptors. Molecules. 2015;20:3868–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hodzic A, Zoumpoulakis P, Pabst G, Mavromoustakos T, Rappolt M. Losartan’s affinity to fluid bilayers couples to lipid/cholesterol interactions. Phys Chem Chem Phys. 2012;14:4780–8.

    Article  CAS  PubMed  Google Scholar 

  23. Sengupta D, Chattopadhyay A. Molecular dynamics simulations of GPCR–cholesterol interaction: an emerging paradigm. Biochim Biophys Acta. 2015;1848:1775–82.

    Article  CAS  PubMed  Google Scholar 

  24. Roopali S, Chattopadhyay A. Membrane cholesterol stabilizes the human serotonin1A receptor. Biochim Biophys Acta. 2012:2936–42.

    Google Scholar 

  25. Navratil AM, Bliss SP, Berghorn KA, Haughian JM, Farmerie TA, Graham JK, Clay CM, Roberson MS. Constitutive localization of the gonadotropin-releasing hormone (GnRH) receptor to low density membrane microdomains is necessary for GnRH signaling to ERK. J Biol Chem. 2003;278:31593–602.

    Article  CAS  PubMed  Google Scholar 

  26. Monastyrskaya K, Hostettler A, Buergi S, Draeger A. The NK1 receptor localizes to the plasma membrane microdomains, and its activation is dependent on lipid raft integrity. J Biol Chem. 2005;280:7135–46.

    Article  CAS  PubMed  Google Scholar 

  27. Jafurulla MD, Bhagyashree DR, Sugunan S, Jean-Marie R, Covey DF, Chattopadhyaya A. Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. Biochim Biophys Acta. 2014;1838:158–63.

    Article  CAS  PubMed  Google Scholar 

  28. Paila YD, Shrish T, Sengupta D, Chattopadhyay A. Molecular modeling of the human serotonin1A receptor: role of membrane cholesterol in ligand binding of the receptor. Mol Biosyst. 2011;7:224–34.

    Article  CAS  PubMed  Google Scholar 

  29. Sengupta D, Chattopadhyay A. Identification of cholesterol binding sites in the serotonin1A receptor. J Phys Chem B. 2012;116:12991–6.

    Article  CAS  PubMed  Google Scholar 

  30. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High resolution crystal structure of an engineered human beta 2 adrenergic G-protein coupled receptoer. Science. 2007;318:1258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu W, et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012;337:232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Batyuk A, Galli L, Ishchenko A, Han GW, Gati C, Popov PA, Lee MY, Stauch B, White TA, Barty A, Aquila A, Hunter MS, Lian M, Boutet S, Pu M, Liu ZJ, Nelson G, James D, Li C, Zhao Y, Spence JC, Liu W, Fromme P, Katritch V, Weierstall U, Stevens RC, Cherezov V. Native phasing of x-ray free-electron laser data for a G protein–coupled receptor. Sci Adv. 2016;2:e1600292.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lyman E, et al. A role for a specific cholesterol interaction in stabilizing the Apo configuration of the human A2A adenosine receptor. Structure. 2009;17:1660–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee JYJ, Lyman E. Predictions for cholesterol interaction sites on the A2A adenosine receptor. J Am Chem Soc. 2012;134:16512–5.

    Article  CAS  PubMed  Google Scholar 

  35. Rouviere E, Arnarez C, Yang L, Lyman E. Identification of two new cholesterol interaction sites on the A2A adenosine receptor. Biophys J. 2017;113:2415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song Y, Kenwirthy AK, Sanders CR. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Sci. 2014;23:1–22.

    Article  PubMed  Google Scholar 

  37. Wanling S, Hsin-Yen Y, Robinson CV, Samson MSP. State Dependent lipid interactions with the a2α receptor revealed by md simulations using in vivo–mimetic membranes. doi: https://doi.org/10.1101/362970.

  38. Durdagi S, Erol I, Ekhteiari Salmas R, Aksoydan B, Kantarcioglu I. Oligomerization and cooperativity in GPCRs from the perspective of the angiotensin AT1 and dopamine D2 receptors. Neurosci Lett. 2018; https://doi.org/10.1016/j.neulet.2018.04.028.

    Article  CAS  PubMed  Google Scholar 

  39. Durdagi S, Aksoydan B, Erol I, Kantarcioglu I, Ergun Y, Bulut G, Acar M, Avsar T, Liapakis G, Karageorgos V, Ekhteiari Salmas R, Sergi B, Alkhatib S, Turan G, Yigit BN, Cantasir K, Kurt B, Kilic T. Integration of multi-scale molecular modeling approaches with experiments for the in silico guided design and discovery of novel herg-neutral antihypertensive oxazalone and imidazolone derivatives and analysis of their potential restrictive effects on cell proliferation. Eur J Med Chem. 2018;145:273–90.

    Article  CAS  PubMed  Google Scholar 

  40. Ekhteiari Salmas R, Seeman P, Aksoydan B, Erol I, Kantarcioglu I, Stein M, Yurtsever M, Durdagi S. Analysis of the glutamate agonist LY404,039 binding to non-static dopamine receptor D2 dimer structures and consensus docking. ACS Chem Nerosci. 2017;8:1404–15.

    Article  Google Scholar 

  41. Ekhteiari Salmas R, Seeman P, Aksoydan B, Stein M, Yurtsever M, Durdagi S. Biological insights of the dopaminergic stabilizer ACR16 at the binding pocket of dopamine D2 receptor. ACS Chem Nerosci. 2017;8:826–36.

    Article  CAS  Google Scholar 

  42. Durdagi S, Ekhteiari Salmas R, Stein M, Yurtsever M, Seeman P. Binding interactions of dopamine and apomorphine in d2high and d2low states of human dopamine d2 receptor (d2r) using computational and experimental techniques. ACS Chem Neurosci. 2016;7:185–95.

    Article  CAS  PubMed  Google Scholar 

  43. Ayoub MA, Zhang Y, Kelly RS, et al. Functional interaction between angiotensin II receptor type 1 and chemokine (C-C motif) receptor 2 with implications for chronic kidney disease. PLoS One. 2015;10:e0119803.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ferré S. The GPCR heterotetramer: challenging classical pharmacology. Trends Pharmacol Sci. 2015;36:145–52.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 2004;5:30–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oates J, Watts A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol. 2011;21:802–7.

    Article  CAS  PubMed  Google Scholar 

  47. Zheng H, Pearsall EA, Hurst DP, Zhang Y, Chu J, Zhou Y, Reggio PH, Loh HH, Law P-Y. Palmitoylation and membrane cholesterol stabilize μ-Opioid receptor homodimerization and G protein coupling. BMC Cell Biol. 2012;13:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sengupta D, Kumar GA, Chattopadhyay A. Chapter 16. Interaction of membrane cholesterol with GPCRs: implications in receptor oligomerization. In: Herrick-Davis K, et al., editors. G-protein-coupled receptor dimers, the receptors 33: Springer International Publishing AG; 2017. p. 415. https://doi.org/10.1007/978-3-319-601748_16.

  49. Goddard AD, Watts A. Regulation of G protein-coupled receptors by palmitoylation and cholesterol. BMC Biol. 2012;10:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Periole X. Interplay of G protein-coupled receptors with the membrane: insights from supra-atomic coarse grain molecular dynamics simulations. Chem Rev. 2017;117:156–85.

    Article  CAS  PubMed  Google Scholar 

  51. Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem. 2017;292:6135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bolivar JH, Muñoz-García JC, Castro-Dopico T, Dijkman PM, Stansfeld PJ, Watts A. Interaction of lipids with the neurotensin receptor 1. Biochim Biophys Acta. 2016;1858:1278–87.

    Article  CAS  PubMed  Google Scholar 

  53. Chakraborty H, Amitabha Chattopadhyay A. Excitements and challenges in GPCR oligomerization: molecular insight from FRET. ACS Chem Nerosci. 2015;6:199–206.

    Article  CAS  Google Scholar 

  54. Gupta K, Donlan JA, Hopper JT, Uzdavinys P, Landreh M, Struwe WB, Drew D, Baldwin AJ, Stansfeld PJ, Robinson CV. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature. 2017;541:421–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gault J, Donlan JA, Liko I, Hopper JT, Gupta K, Housden N, Struwe WB, Marty MT, Mize T, Bechara C, Zhu Y, Wu B, Kleanthous C, Belov M, Damoc E, Makarov A, Robinson CV. High resolution mass spectrometry of small molecules bound to membrane proteins. Nat Methods. 2016;13:333–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serdar Durdagi or Thomas Mavromoustakos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiriakidi, S., Kolocouris, A., Liapakis, G., Ikram, S., Durdagi, S., Mavromoustakos, T. (2019). Effects of Cholesterol on GPCR Function: Insights from Computational and Experimental Studies. In: Rosenhouse-Dantsker, A., Bukiya, A. (eds) Direct Mechanisms in Cholesterol Modulation of Protein Function. Advances in Experimental Medicine and Biology, vol 1135. Springer, Cham. https://doi.org/10.1007/978-3-030-14265-0_5

Download citation

Publish with us

Policies and ethics