Skip to main content

Molecular Determinants of Cholesterol Binding to Soluble and Transmembrane Protein Domains

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1135))

Abstract

Cholesterol-protein interactions play a critical role in lipid metabolism and maintenance of cell integrity. To elucidate the molecular mechanisms underlying these interactions, a growing number of studies have focused on determining the crystal structures of a variety of proteins complexed with cholesterol. These include structures in which cholesterol binds to transmembrane domains, and structures in which cholesterol interacts with soluble ones. However, it remains unknown whether there are differences in the prerequisites for cholesterol binding to these two types of domains. Thus, to define the molecular determinants that characterize the binding of cholesterol to these two distinct protein domains, we employed the database of crystal structures of proteins complexed with cholesterol. Our analysis suggests that cholesterol may bind more strongly to soluble domains than to transmembrane domains. The interactions between cholesterol and the protein in both cases critically depends on hydrophobic and aromatic residues. In addition, cholesterol binding sites in both types of domains involve polar and/or charged residues. However, the percentage of appearance of the different types of polar/charged residues in cholesterol binding sites differs between soluble and transmembrane domains. No differences were observed in the conformational characteristics of the cholesterol molecules bound to soluble versus transmembrane protein domains suggesting that cholesterol is insensitive to the environment provided by the different protein domains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CARC:

Cholesterol recognition motif exhibiting an inverted CRAC orientation along the polypeptide chain

CCM:

Cholesterol Consensus Motif

CRAC:

Cholesterol Recognition Amino acid Consensus (motif)

NPC:

Niemann-Pick Type C (protein)

PDB:

Protein Data Bank

RCSB:

Research Collaboratory for Structural Bioinformatics

References

  1. Berg JM, Tymczko JL, Stryer L. The complex regulation of cholesterol biosynthesis takes place at several levels. In: Biochemistry. 7th ed. New York. Section 26.3: W.H. Freeman; 2012. p. 770–9.

    Google Scholar 

  2. Afonso SM, Machado RM, Lavrador MS, Quintao ECR, Moore KJ, Lottenberg AM. Molecular pathways underlying cholesterol homeostasis. Nutrients. 2018;10:E760.

    Article  PubMed  Google Scholar 

  3. Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol. 2010;22:422–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015;6:254–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jeske DJ, Dietschy JM. Regulation of rates of cholesterol synthesis in vivo in the liver and carcass of the rat measured using [3H] water. J Lipid Res. 1980;21:364–76.

    CAS  PubMed  Google Scholar 

  6. Lascombe MB, Ponchet M, Venard P, Milat ML, Blein JP, Prangé T. The 1.45A resolution structure of the cryptogein-cholesterol complex: a close-up view of a sterol carrier protein (SCP) active site. Acta Crystallogr D Biol Crystallogr. 2002;58:1442–7.

    Article  PubMed  Google Scholar 

  7. Kallen JA, Schlaeppi JM, Bitsch F, Geisse S, Geiser M, Delhon I, Fournier B. X-ray structure of hRORα LBD at 1.63A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORα. Structure. 2002;10:1697–707.

    Article  CAS  PubMed  Google Scholar 

  8. Gong X, Qian H, Zhou X, Wu J, Wan T, Cao P, Huang W, Zhao X, Wang X, Wang P, Shi Y, Gao GF, Zhou Q, Yan N. Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell. 2016;165:1467–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci U S A. 2011;108:10139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roversi P, Johnson S, Preston SG, Nunn MA, Paesen GC, Austyn JM, Nuttall PA, Lea SM. Structural basis of cholesterol binding by a novel clade of dendritic cell modulators from ticks. Sci Rep. 2017;7:16057.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, Tully MD, Mydock-McGrane L, Covey DF, Rambo RP, Sansom MSP, Newstead S, Rohatgi R, Siebold C. Structural basis of smoothened regulation by its extracellular domains. Nature. 2016;535(7613):517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Manik MK, Yang H, Tong J, Im YJ. Structure of yeast OSBP-related protein osh1 reveals key determinants for lipid transport and protein targeting at the nucleus-vacuole junction. Structure. 2017;25:617–629.e3.

    Article  CAS  PubMed  Google Scholar 

  13. Conrad KS, Cheng TW, Ysselstein D, Heybrock S, Hoth LR, Chrunyk BA, Am Ende CW, Krainc D, Schwake M, Saftig P, Liu S, Qiu X, Ehlers MD. Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Nat Commun. 2017;8:1908.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI, Bause M, Bauer S, Bartholomaeus R, Bernhardt G, Koenig B, Buschauer A, Stahlberg H, Altmann KH, Locher KP. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat Struct Mol Biol. 2018;25:333–40.

    Article  CAS  PubMed  Google Scholar 

  15. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EYT, Velasquez J, Kuhn P, Stevens RC. A specific cholesterol binding site is established by the 2.8Å structure of the human β-adrenergic receptor. Structure. 2008;16:897–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 2007;318:1258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morth JP, Pedersen BP, Toustrup-Jensen MS, Sørensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P. Crystal structure of the sodium-potassium pump. Nature. 2007;450:1043–9.

    Article  CAS  PubMed  Google Scholar 

  18. Shinoda T, Ogawa H, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature. 2009;459:446–50.

    Article  CAS  PubMed  Google Scholar 

  19. Wada T, Shimono K, Kikukawa T, Hato M, Shinya N, Kim SY, Kimura-Someya T, Shirouzu M, Tamogami J, Miyauchi S, Jung KH, Kamo N, Yokoyama S. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J Mol Biol. 2011;411:986–98.

    Article  CAS  PubMed  Google Scholar 

  20. Liu W, Wacker D, Gati C, Han GW, James D, Wang D, Nelson G, Weierstall U, Katritch V, Barty A, Zatsepin NA, Li D, Messerschmidt M, Boutet S, Williams GJ, Koglin JE, Seibert MM, Wang C, Shah ST, Basu S, Fromme R, Kupitz C, Rendek KN, Grotjohann I, Fromme P, Kirian RA, Beyerlein KR, White TA, Chapman HN, Caffrey M, Spence JC, Stevens RC, Cherezov V. Serial femtosecond crystallography of G protein-coupled receptors. Science. 2013;342:1521–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science. 2014;344:58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang K, Zhang J, Gao ZG, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E, Lu W, Fenalti G, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature. 2014;509:115–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, Angelini A, Waghray D, Dror RO, Ploegh HL, Garcia KC. Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science. 2015;347:1113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang D, Gao ZG, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W, Han GW, Liu H, Cherezov V, Katritch V, Jiang H, Stevens RC, Jacobson KA, Zhao Q, Wu B. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature. 2015;520:317–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Penmatsa A, Wang KH, Gouaux E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature. 2013;503:85–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Penmatsa A, Wang KH, Gouaux E. X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat Struct Mol Biol. 2015;22:506–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK. Structural insights into μ-opioid receptor activation. Nature. 2015;524:315–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532:334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Y, Clarke OB, Kim J, Stowe S, Kim YK, Assur Z, Cavalier M, Godoy-Ruiz R, von Alpen DC, Manzini C, Blaner WS, Frank J, Quadro L, Weber DJ, Shapiro L, Hendrickson WA, Mancia F. Structure of the STRA6 receptor for retinol uptake. Science. 2016;353:aad8266.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zimmerman B, Kelly B, McMillan BJ, Seegar TCM, Dror RO, Kruse AC, Blacklow SC. Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell. 2016;167:1041–1051.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oswald C, Rappas M, Kean J, Doré AS, Errey JC, Bennett K, Deflorian F, Christopher JA, Jazayeri A, Mason JS, Congreve M, Cooke RM, Marshall FH. Intracellular allosteric antagonism of the CCR9 receptor. Nature. 2016;540:462–5.

    Article  CAS  PubMed  Google Scholar 

  32. Martin-Garcia JM, Conrad CE, Nelson G, Stander N, Zatsepin NA, Zook J, Zhu L, Geiger J, Chun E, Kissick D, Hilgart MC, Ogata C, Ishchenko A, Nagaratnam N, Roy-Chowdhury S, Coe J, Subramanian G, Schaffer A, James D, Ketwala G, Venugopalan N, Xu S, Corcoran S, Ferguson D, Weierstall U, Spence JCH, Cherezov V, Fromme P, Fischetti RF, Liu W. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ. 2017;4:439–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheng RKY, Segala E, Robertson N, Deflorian F, Doré AS, Errey JC, Fiez-Vandal C, Marshall FH, Cooke RM. Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity. Structure. 2017;25:1275–85.

    Article  CAS  PubMed  Google Scholar 

  34. Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho JH, Han GW, Ding K, Li X, Liu H, Hanson MA, Zhao S, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature. 2017;547:468–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shihoya W, Nishizawa T, Yamashita K, Inoue A, Hirata K, Kadji FMN, Okuta A, Tani K, Aoki J, Fujiyoshi Y, Doi T, Nureki O. X-ray structures of endothelin ETB receptor bound to clinical antagonist bosentan and its analog. Nat Struct Mol Biol. 2017;24:758–64.

    Article  CAS  PubMed  Google Scholar 

  36. Johnson ZL, Chen J. ATP binding enables substrate release from multidrug resistance protein 1. Cell. 2018;172:81–89.e10.

    Article  CAS  PubMed  Google Scholar 

  37. Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE, Han GW, Lee MY, Pardon E, Steyaert J, Huang XP, Strachan RT, Tribo AR, Pasternak GW, Carroll FI, Stevens RC, Cherezov V, Katritch V, Wacker D, Roth BL. Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell. 2018;172:55–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jungnickel KEJ, Parker JL, Newstead S. Structural basis for amino acid transport by the CAT family of SLC7 transporters. Nat Commun. 2018;9:550.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang Z, Tóth B, Szollosi A, Chen J, Csanády L. Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation. elife. 2018;7:e36409.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res. 2006;45:279–94.

    Article  CAS  PubMed  Google Scholar 

  41. Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–7.

    Article  CAS  PubMed  Google Scholar 

  42. Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC and tilted domains. Front Physiol. 2013;4:31.

    PubMed  PubMed Central  Google Scholar 

  43. Rosenhouse-Dantsker A. Insights into the molecular requirements for cholesterol binding to ion channels. Curr Top Membr. 2017;80:187–208.

    Article  PubMed  Google Scholar 

  44. Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM. Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+_ (BK) channels. J Biol Chem. 2012;287:20509–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maresca M, Derghal A, Caravagna C, Dudin S, Fantini J. Controlled aggregation of adenine by sugars: physicochemical studies, molecular modelling simulations of sugar-aromatic CH-pi stacking interactions, and biological significance. Phys Chem Chem Phys. 2008;10:2792–800.

    Article  CAS  PubMed  Google Scholar 

  46. Chua NK, Howe V, Jatana N, Thukral L, Brown AJ. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis. J Biol Chem. 2017;292:19959–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Motamed M, Zhang Y, Wang ML, Seemann J, Kwon HJ, Goldstein JL, Brown MS. Identification of luminal loop 1 of Scap protein as the sterol sensor that maintains cholesterol homeostasis. J Biol Chem. 2011;286(20):18002–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bukiya AN, Dopico AM. Common structural features of cholesterol binding sites in crystallized soluble proteins. J Lipid Res. 2017;58:1044–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Estiu G, Khatri N, Wiest O. Computational studies of the cholesterol transport between NPC2 and the N-terminal domain of NPC1 (NPC1(NTD)). Biochemistry. 2013;52:6879–91.

    Article  CAS  PubMed  Google Scholar 

  50. Elghobashi-Meinhardt N. Niemann–pick type C disease: a QM/MM study of conformational changes in cholesterol in the NPC1(NTD) and NPC2 binding pockets. Biochemistry. 2014;53:6603–14.

    Article  CAS  PubMed  Google Scholar 

  51. Lei J. Probability distribution of the radius of gyration of freely jointed chains. J Chem Phys. 2010;133:104903.

    Article  PubMed  Google Scholar 

  52. Khalil RA, Zarari AA. Theoretical estimation of the critical packing parameter of amphiphilic self-assembled aggregates. Appl Surf Sci. 2014;318:85–9.

    Article  CAS  Google Scholar 

  53. Chatzieleftheriou S, Adendorff MR, Lagaros ND. Generalized potential energy finite elements for modeling molecular nanostructures. J Chem Inf Model. 2016;56:1963–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avia Rosenhouse-Dantsker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ounjian, J., Bukiya, A.N., Rosenhouse-Dantsker, A. (2019). Molecular Determinants of Cholesterol Binding to Soluble and Transmembrane Protein Domains. In: Rosenhouse-Dantsker, A., Bukiya, A. (eds) Direct Mechanisms in Cholesterol Modulation of Protein Function. Advances in Experimental Medicine and Biology, vol 1135. Springer, Cham. https://doi.org/10.1007/978-3-030-14265-0_3

Download citation

Publish with us

Policies and ethics