Advertisement

Molecular Determinants of Cholesterol Binding to Soluble and Transmembrane Protein Domains

  • Jessica Ounjian
  • Anna N. Bukiya
  • Avia Rosenhouse-DantskerEmail author
Chapter
  • 567 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1135)

Abstract

Cholesterol-protein interactions play a critical role in lipid metabolism and maintenance of cell integrity. To elucidate the molecular mechanisms underlying these interactions, a growing number of studies have focused on determining the crystal structures of a variety of proteins complexed with cholesterol. These include structures in which cholesterol binds to transmembrane domains, and structures in which cholesterol interacts with soluble ones. However, it remains unknown whether there are differences in the prerequisites for cholesterol binding to these two types of domains. Thus, to define the molecular determinants that characterize the binding of cholesterol to these two distinct protein domains, we employed the database of crystal structures of proteins complexed with cholesterol. Our analysis suggests that cholesterol may bind more strongly to soluble domains than to transmembrane domains. The interactions between cholesterol and the protein in both cases critically depends on hydrophobic and aromatic residues. In addition, cholesterol binding sites in both types of domains involve polar and/or charged residues. However, the percentage of appearance of the different types of polar/charged residues in cholesterol binding sites differs between soluble and transmembrane domains. No differences were observed in the conformational characteristics of the cholesterol molecules bound to soluble versus transmembrane protein domains suggesting that cholesterol is insensitive to the environment provided by the different protein domains.

Keywords

Cholesterol binding Soluble domain Transmembrane domain Lipid-protein interactions Steroid binding site 

Abbreviations

CARC

Cholesterol recognition motif exhibiting an inverted CRAC orientation along the polypeptide chain

CCM

Cholesterol Consensus Motif

CRAC

Cholesterol Recognition Amino acid Consensus (motif)

NPC

Niemann-Pick Type C (protein)

PDB

Protein Data Bank

RCSB

Research Collaboratory for Structural Bioinformatics

References

  1. 1.
    Berg JM, Tymczko JL, Stryer L. The complex regulation of cholesterol biosynthesis takes place at several levels. In: Biochemistry. 7th ed. New York. Section 26.3: W.H. Freeman; 2012. p. 770–9.Google Scholar
  2. 2.
    Afonso SM, Machado RM, Lavrador MS, Quintao ECR, Moore KJ, Lottenberg AM. Molecular pathways underlying cholesterol homeostasis. Nutrients. 2018;10:E760.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol. 2010;22:422–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015;6:254–64.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jeske DJ, Dietschy JM. Regulation of rates of cholesterol synthesis in vivo in the liver and carcass of the rat measured using [3H] water. J Lipid Res. 1980;21:364–76.PubMedGoogle Scholar
  6. 6.
    Lascombe MB, Ponchet M, Venard P, Milat ML, Blein JP, Prangé T. The 1.45A resolution structure of the cryptogein-cholesterol complex: a close-up view of a sterol carrier protein (SCP) active site. Acta Crystallogr D Biol Crystallogr. 2002;58:1442–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Kallen JA, Schlaeppi JM, Bitsch F, Geisse S, Geiser M, Delhon I, Fournier B. X-ray structure of hRORα LBD at 1.63A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORα. Structure. 2002;10:1697–707.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gong X, Qian H, Zhou X, Wu J, Wan T, Cao P, Huang W, Zhao X, Wang X, Wang P, Shi Y, Gao GF, Zhou Q, Yan N. Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell. 2016;165:1467–78.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci U S A. 2011;108:10139–43.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Roversi P, Johnson S, Preston SG, Nunn MA, Paesen GC, Austyn JM, Nuttall PA, Lea SM. Structural basis of cholesterol binding by a novel clade of dendritic cell modulators from ticks. Sci Rep. 2017;7:16057.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, Tully MD, Mydock-McGrane L, Covey DF, Rambo RP, Sansom MSP, Newstead S, Rohatgi R, Siebold C. Structural basis of smoothened regulation by its extracellular domains. Nature. 2016;535(7613):517–22.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Manik MK, Yang H, Tong J, Im YJ. Structure of yeast OSBP-related protein osh1 reveals key determinants for lipid transport and protein targeting at the nucleus-vacuole junction. Structure. 2017;25:617–629.e3.CrossRefPubMedGoogle Scholar
  13. 13.
    Conrad KS, Cheng TW, Ysselstein D, Heybrock S, Hoth LR, Chrunyk BA, Am Ende CW, Krainc D, Schwake M, Saftig P, Liu S, Qiu X, Ehlers MD. Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Nat Commun. 2017;8:1908.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI, Bause M, Bauer S, Bartholomaeus R, Bernhardt G, Koenig B, Buschauer A, Stahlberg H, Altmann KH, Locher KP. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat Struct Mol Biol. 2018;25:333–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EYT, Velasquez J, Kuhn P, Stevens RC. A specific cholesterol binding site is established by the 2.8Å structure of the human β-adrenergic receptor. Structure. 2008;16:897–905.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 2007;318:1258–65.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Morth JP, Pedersen BP, Toustrup-Jensen MS, Sørensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P. Crystal structure of the sodium-potassium pump. Nature. 2007;450:1043–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shinoda T, Ogawa H, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature. 2009;459:446–50.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wada T, Shimono K, Kikukawa T, Hato M, Shinya N, Kim SY, Kimura-Someya T, Shirouzu M, Tamogami J, Miyauchi S, Jung KH, Kamo N, Yokoyama S. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J Mol Biol. 2011;411:986–98.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Liu W, Wacker D, Gati C, Han GW, James D, Wang D, Nelson G, Weierstall U, Katritch V, Barty A, Zatsepin NA, Li D, Messerschmidt M, Boutet S, Williams GJ, Koglin JE, Seibert MM, Wang C, Shah ST, Basu S, Fromme R, Kupitz C, Rendek KN, Grotjohann I, Fromme P, Kirian RA, Beyerlein KR, White TA, Chapman HN, Caffrey M, Spence JC, Stevens RC, Cherezov V. Serial femtosecond crystallography of G protein-coupled receptors. Science. 2013;342:1521–4.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science. 2014;344:58–64.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang K, Zhang J, Gao ZG, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E, Lu W, Fenalti G, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature. 2014;509:115–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, Angelini A, Waghray D, Dror RO, Ploegh HL, Garcia KC. Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science. 2015;347:1113–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang D, Gao ZG, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W, Han GW, Liu H, Cherezov V, Katritch V, Jiang H, Stevens RC, Jacobson KA, Zhao Q, Wu B. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature. 2015;520:317–21.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Penmatsa A, Wang KH, Gouaux E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature. 2013;503:85–90.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Penmatsa A, Wang KH, Gouaux E. X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat Struct Mol Biol. 2015;22:506–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK. Structural insights into μ-opioid receptor activation. Nature. 2015;524:315–21.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532:334–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chen Y, Clarke OB, Kim J, Stowe S, Kim YK, Assur Z, Cavalier M, Godoy-Ruiz R, von Alpen DC, Manzini C, Blaner WS, Frank J, Quadro L, Weber DJ, Shapiro L, Hendrickson WA, Mancia F. Structure of the STRA6 receptor for retinol uptake. Science. 2016;353:aad8266.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zimmerman B, Kelly B, McMillan BJ, Seegar TCM, Dror RO, Kruse AC, Blacklow SC. Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell. 2016;167:1041–1051.e11.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Oswald C, Rappas M, Kean J, Doré AS, Errey JC, Bennett K, Deflorian F, Christopher JA, Jazayeri A, Mason JS, Congreve M, Cooke RM, Marshall FH. Intracellular allosteric antagonism of the CCR9 receptor. Nature. 2016;540:462–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Martin-Garcia JM, Conrad CE, Nelson G, Stander N, Zatsepin NA, Zook J, Zhu L, Geiger J, Chun E, Kissick D, Hilgart MC, Ogata C, Ishchenko A, Nagaratnam N, Roy-Chowdhury S, Coe J, Subramanian G, Schaffer A, James D, Ketwala G, Venugopalan N, Xu S, Corcoran S, Ferguson D, Weierstall U, Spence JCH, Cherezov V, Fromme P, Fischetti RF, Liu W. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ. 2017;4:439–54.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cheng RKY, Segala E, Robertson N, Deflorian F, Doré AS, Errey JC, Fiez-Vandal C, Marshall FH, Cooke RM. Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity. Structure. 2017;25:1275–85.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho JH, Han GW, Ding K, Li X, Liu H, Hanson MA, Zhao S, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature. 2017;547:468–71.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Shihoya W, Nishizawa T, Yamashita K, Inoue A, Hirata K, Kadji FMN, Okuta A, Tani K, Aoki J, Fujiyoshi Y, Doi T, Nureki O. X-ray structures of endothelin ETB receptor bound to clinical antagonist bosentan and its analog. Nat Struct Mol Biol. 2017;24:758–64.CrossRefPubMedGoogle Scholar
  36. 36.
    Johnson ZL, Chen J. ATP binding enables substrate release from multidrug resistance protein 1. Cell. 2018;172:81–89.e10.CrossRefGoogle Scholar
  37. 37.
    Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE, Han GW, Lee MY, Pardon E, Steyaert J, Huang XP, Strachan RT, Tribo AR, Pasternak GW, Carroll FI, Stevens RC, Cherezov V, Katritch V, Wacker D, Roth BL. Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell. 2018;172:55–67.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jungnickel KEJ, Parker JL, Newstead S. Structural basis for amino acid transport by the CAT family of SLC7 transporters. Nat Commun. 2018;9:550.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang Z, Tóth B, Szollosi A, Chen J, Csanády L. Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation. elife. 2018;7:e36409.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res. 2006;45:279–94.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC and tilted domains. Front Physiol. 2013;4:31.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Rosenhouse-Dantsker A. Insights into the molecular requirements for cholesterol binding to ion channels. Curr Top Membr. 2017;80:187–208.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM. Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+_ (BK) channels. J Biol Chem. 2012;287:20509–21.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Maresca M, Derghal A, Caravagna C, Dudin S, Fantini J. Controlled aggregation of adenine by sugars: physicochemical studies, molecular modelling simulations of sugar-aromatic CH-pi stacking interactions, and biological significance. Phys Chem Chem Phys. 2008;10:2792–800.CrossRefPubMedGoogle Scholar
  46. 46.
    Chua NK, Howe V, Jatana N, Thukral L, Brown AJ. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis. J Biol Chem. 2017;292:19959–73.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Motamed M, Zhang Y, Wang ML, Seemann J, Kwon HJ, Goldstein JL, Brown MS. Identification of luminal loop 1 of Scap protein as the sterol sensor that maintains cholesterol homeostasis. J Biol Chem. 2011;286(20):18002–12.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bukiya AN, Dopico AM. Common structural features of cholesterol binding sites in crystallized soluble proteins. J Lipid Res. 2017;58:1044–54.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Estiu G, Khatri N, Wiest O. Computational studies of the cholesterol transport between NPC2 and the N-terminal domain of NPC1 (NPC1(NTD)). Biochemistry. 2013;52:6879–91.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Elghobashi-Meinhardt N. Niemann–pick type C disease: a QM/MM study of conformational changes in cholesterol in the NPC1(NTD) and NPC2 binding pockets. Biochemistry. 2014;53:6603–14.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lei J. Probability distribution of the radius of gyration of freely jointed chains. J Chem Phys. 2010;133:104903.CrossRefPubMedGoogle Scholar
  52. 52.
    Khalil RA, Zarari AA. Theoretical estimation of the critical packing parameter of amphiphilic self-assembled aggregates. Appl Surf Sci. 2014;318:85–9.CrossRefGoogle Scholar
  53. 53.
    Chatzieleftheriou S, Adendorff MR, Lagaros ND. Generalized potential energy finite elements for modeling molecular nanostructures. J Chem Inf Model. 2016;56:1963–78.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jessica Ounjian
    • 1
  • Anna N. Bukiya
    • 2
  • Avia Rosenhouse-Dantsker
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of PharmacologyThe University of Tennessee HSCMemphisUSA

Personalised recommendations