Skip to main content

Space-Time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients

  • Chapter
  • First Online:
Advanced Finite Element Methods with Applications (FEM 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 128))

Included in the following conference series:

Abstract

We introduce a completely unstructured, conforming space-time finite element method for the numerical solution of parabolic initial-boundary value problems with variable in space and time, possibly discontinuous diffusion coefficients. Discontinuous diffusion coefficients allow the treatment of moving interfaces. We show stability of the method and an a priori error estimate , including the case of local stabilizations which are important for adaptivity . To study the method in practice, we consider several typical model problems in one, two, and three spatial dimensions. The implementation of our space-time finite element method is fully parallelized with MPI. Extensive numerical tests were performed to study the convergence behavior of the stabilized space-time finite element discretization method and the scaling properties of the parallel AMG-preconditioned GMRES solver that we use to solve the huge system of space-time finite element equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.llnl.gov/casc/hypre/.

  2. 2.

    https://www.ricam.oeaw.ac.at/hpc/.

References

  1. Ahmed, N., Matthies, G.: Numerical study of SUPG and LPS methods combined with higher order variational time discretization schemes applied to time-dependent linear convection–diffusion–reaction equations. J. Sci. Comput. 67(3), 988–1018 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ahrens, J., Geveci, B., Law, C.: ParaView: An End-User Tool for Large Data Visualization. Elsevier, San Diego (2005)

    Google Scholar 

  3. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  4. Aziz, A.K., Monk, P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52, 255–274 (1989)

    Article  MathSciNet  Google Scholar 

  5. Bank, R.E., Vassilevski, P., Zikatanov, L.: Arbitrary dimension convection-diffusion scheme for space-time discretizations. J. Comput. Appl. Math. 310, 19–31 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bause, M., Radu, F.A., Köcher, U.: Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space. Numer. Math. 137(4), 773–818 (2017)

    Article  MathSciNet  Google Scholar 

  7. Braess, D.: Finite Elemente; Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer-Verlag, Berlin (2007)

    MATH  Google Scholar 

  8. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing, Amsterdam (1978)

    MATH  Google Scholar 

  10. Devaud, D., Schwab, C.: Space–time hp-approximation of parabolic equations. Calcolo 55(3), 35 (2018)

    Article  MathSciNet  Google Scholar 

  11. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012)

    Google Scholar 

  12. Dörfler, W., Findeisen, S., Wieners, C.: Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution. Comput. Methods Appl. Math. 16, 409–428 (2016)

    Article  MathSciNet  Google Scholar 

  13. Duan, H., Li, S., Tan, R.C.E., Zheng, W.: A delta-regularization finite element method for a double curl problem with divergence-free constraint. SIAM J. Numer. Anal. 50(6), 3208–3230 (2012)

    Article  MathSciNet  Google Scholar 

  14. Ern, A., Schieweck, F.: Discontinuous Galerkin method in time combined with a stabilized finite element method in space for linear first-order PDEs. Math. Comput. 85(301), 2099–2129 (2016)

    Article  MathSciNet  Google Scholar 

  15. Gander, M., Neumüller, M.: Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38(4), A2173–A2208 (2016)

    Article  MathSciNet  Google Scholar 

  16. Gander, M.J.: 50 years of time parallel integration. In: Multiple Shooting and Time Domain Decomposition, pp. 69–114. Springer Verlag, Heidelberg (2015)

    Google Scholar 

  17. Gangl, P., Langer, U., Laurain, A., Meftahi, H., Sturm, K.: Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM J. Sci. Comput. 37(6), B1002–B1025 (2015)

    Article  MathSciNet  Google Scholar 

  18. Hackbusch, W.: Parabolic multigrid methods. In: Glowinski, R., Lions, J.L. (eds.) Computing Methods in Applied Sciences and Engineering VI, pp. 189–197. North-Holland, Amsterdam (1984)

    Google Scholar 

  19. Karabelas, E., Neumüller, M.: Generating admissible space-time meshes for moving domains in d+1-dimensions. Technical Report 07, Institute of Computational Mathematics, Johannes Kepler University Linz (2015)

    Google Scholar 

  20. Kolev, T., Dobrev, V.: GLVis: OpenGL finite element visualization tool. https://github.com/glvis/glvis, 6 (2010)

  21. Kolev, T., Dobrev, V.: MFEM: modular finite element methods library. https://github.com/mfem/mfem, 6 (2010)

  22. Kunstmann, P.C., Weis, L.: Maximal L p-regularity for Parabolic Equations, Fourier Multiplier Theorems and H -functional Calculus, pp. 65–311. Springer-Verlag, Berlin (2004)

    Google Scholar 

  23. Ladyžhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, vol. 49. Springer-Verlag, New York (1985)

    Google Scholar 

  24. Ladyzhenskaya, O.A., Solonnikov, V.A., Uraltseva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Providence (1968)

    Google Scholar 

  25. Lang, J.: Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems: Theory, Algorithm, and Applications. LNCSE, vol. 16. Springer-Verlag, Berlin (2001)

    Google Scholar 

  26. Langer, U., Moore, S.E., Neumüller, M.: Space-time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Eng. 306, 342–363 (2016)

    Article  MathSciNet  Google Scholar 

  27. Leykekhman, D., Vexler, B.: Discrete maximal parabolic regularity for Galerkin finite element methods. Numer. Math. 135, 923–952 (2017)

    Article  MathSciNet  Google Scholar 

  28. Lions, J.-L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. Acad. Sci. Paris I 332, 661–668 (2001)

    Article  Google Scholar 

  29. Moore, S.: Nonstandard discretization strategies in isogeometric analysis for partial differential equations. PhD thesis, Johannes Kepler University Linz, Linz (2017)

    Google Scholar 

  30. Moore, S.: A stable space–time finite element method for parabolic evolution problems. Calcolo 55, 18 (2018). First Online: 16 April 2018.

    Google Scholar 

  31. Neumüller, M.: Space-time Methods; Fast Solvers and Applications. Monographic Series TU Graz: Computation in Engineering and Science, vol. 20. TU Graz, Graz (2013)

    Google Scholar 

  32. Neumüller, M., Steinbach, O.: Refinement of flexible space-time finite element meshes and discontinuous Galerkin methods. Comput. Vis. Sci. 14(5), 189–205 (2011)

    Article  MathSciNet  Google Scholar 

  33. Otoguro, Y., Takizawa, K., Tezduyar, T.E.: Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput. Fluids 158, 189–200 (2017)

    Article  MathSciNet  Google Scholar 

  34. Rhebergen, S., Cockburn, B., van der Vegt, J.J.W.: A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 233, 339–358 (2013)

    Article  MathSciNet  Google Scholar 

  35. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. Frontiers in Applied Mathematics, vol. 35. Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Google Scholar 

  36. Schafelner, A.: Space-time finite element methods for parabolic inital-boundary problems. Master’s thesis, Johannes Kepler University Linz (2017)

    Google Scholar 

  37. Schieweck, F.: A-stable discontinuous Galerkin-Petrov time discretization of higher order. J. Numer. Math. 18(1), 25–57 (2010)

    Article  MathSciNet  Google Scholar 

  38. Schöberl, J.: NETGEN: an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997)

    Article  Google Scholar 

  39. Steinbach, O.: Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15(4), 551–566 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Steinbach, O., Yang, H.: Comparison of algebraic multigrid methods for an adaptive space-time finite-element discretization of the heat equation in 3d and 4d. Numer. Linear Algebra Appl. 25(3) (2018). First published online as e2143, 7 February 2018

    Google Scholar 

  41. Steinbach, O., Yang, H.: Space–time finite element methods for parabolic evolution equations: discretization, a posteriori error estimation, adaptivity and solution. In: U. Langer, O. Steinbach (eds.) Space-Time Methods: Application to Partial Differential Equations. Radon Series on Computational and Applied Mathematics, vol. 25. pp. 226–259, de Gruyter (2019)

    Google Scholar 

  42. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, vol. 25, 2nd edn. Springer-Verlag, Berlin (2006)

    Google Scholar 

  43. Toulopoulos, I.: Stabilized space-time finite element methods of parabolic evolution problems. Technical Report 2017–19, RICAM, Linz (2017)

    Google Scholar 

  44. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. AMS, Providence (2010)

    Google Scholar 

  45. Vandewalle, S.: Parallel Multigrid Waveform Relaxation for Parabolic Problems. Teubner Skripten zur Numerik. Teubner, Stuttgart (1993)

    Google Scholar 

  46. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Fund (FWF) under the grant W1214, project DK4. This support is gratefully acknowledged. Furthermore, the authors would like to express their thanks to the anonymous referees for their helpful hints and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Langer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langer, U., Neumüller, M., Schafelner, A. (2019). Space-Time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients. In: Apel, T., Langer, U., Meyer, A., Steinbach, O. (eds) Advanced Finite Element Methods with Applications. FEM 2017. Lecture Notes in Computational Science and Engineering, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-14244-5_13

Download citation

Publish with us

Policies and ethics