Skip to main content

On a Renewed Approach to A Posteriori Error Bounds for Approximate Solutions of Reaction-Diffusion Equations

  • Chapter
  • First Online:
Advanced Finite Element Methods with Applications (FEM 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 128))

Included in the following conference series:

Abstract

We discuss a new approach to obtaining the guaranteed, robust and consistent a posteriori error bounds for approximate solutions of the reaction-diffusion problems, modelled by the equation − Δu + σu = f in Ω, u|∂Ω = 0, with an arbitrary constant or piece wise constant σ ≥ 0. The consistency of a posteriori error bounds for solutions by the finite element methods assumes in this paper that their orders of accuracy in respect to the mesh size h coincide with those in the corresponding sharp a priori bounds. Additionally, it assumes that for such a coincidence it is sufficient that the testing fluxes possess only the standard approximation properties without resorting to the equilibration. Under mild assumptions, with the use of a new technique, it is proved that the coefficient before the L 2-norm of the residual type term in the a posteriori error bound is \({\mathcal O}(h)\) uniformly for all testing fluxes from admissible set, which is the space H(Ω, div). As a consequence of these facts, there is a wide range of computationally cheap and efficient procedures for evaluating the test fluxes, making the obtained a posteriori error bounds sharp. The technique of obtaining the consistent a posteriori bounds was exposed in [arXiv:1711.02054v1 [math.NA] 6 Nov 2017] and very briefly in [Doklady Mathematics, 96 (1), 2017, 380–383].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this text, the right part of an a posteriori bound is termed majorant.

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Estimation in Finite Element Analysis. Wiley, New York (2000)

    Book  Google Scholar 

  2. Ainsworth, M., Vejchodský, T.: Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems. Numer. Math. 119(2), 219–243 (2011)

    Article  MathSciNet  Google Scholar 

  3. Ainsworth, M., Vejchodský, T.: Robust error bounds for finite element approximation of reaction-diffusion problems with non-constant reaction coefficient in arbitrary space dimension. Comput. Methods Appl. Mech. Eng. 281, 184–199 (2014)

    Article  MathSciNet  Google Scholar 

  4. Anufriev, I.E., Korneev, V.G., Kostylev, V.S.: Exactly equilibrated fields, can they be efficiently used for a posteriori error estimation? Uchenye zapiski Kazanskogo universiteta, seria Fiziko-matematicheskie nauki (Scientific notes of Kazan State University, series Physical-Mathematical Sciences) 148(4), 94–143 (2006)

    Google Scholar 

  5. Aubin, J.-P.: Approximation of Elliptic Boundary-Value Problems. Wiley-Interscience, New York (1972)

    MATH  Google Scholar 

  6. Babuska, I., Strouboulis, T.: Finite Element Method and Its Reliability. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  7. Babuska, I., Witeman, J.R., Strouboulis, T.: Finite elements. An introduction to the method and error estimation. University Press, Oxford (2011)

    Google Scholar 

  8. Bank, R.E., Xu, J., Zheng, B.: Superconvergent Derivative Recovery for Lagrange Triangular Elements of Degree p on unstructured grids. SIAM J. Numer. Anal. 45(5), 2032–2046 (2007)

    Article  MathSciNet  Google Scholar 

  9. Bartels, S., Nochetto, R.H., Salgado, A.J.: A total variation diminishing interpolation operator and applications. Math. Comput. 84, 2569–2587 (2015). https://doi.org/10.1090/mcom/2942

    Article  MathSciNet  Google Scholar 

  10. Bramble, J.H., Xu, J.: Some estimates for a weighted L 2 projection. Math. Comput. 56(194), 463–476 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Cai, Z., Zhang, S.: Flux recovery and a posteriori error estimators: conforming elements for scalar elliptic equations. SIAM J. Numer. Anal. 48(2), 578–602 (2010)

    Article  MathSciNet  Google Scholar 

  12. Carey, V., Carey, G.F.: Flexible patch post-processing recovery strategies for solution enhancement and adaptive mesh refinement. Int. J. Numer. Methods Eng. 87(1–5), 424–436 (2011)

    Article  Google Scholar 

  13. Carstensen, C.E., Merdon, C.: Effective postprocessing for equilibration a posteriori error estimators. Numer. Math. 123(3), 425–459 (2013)

    Article  MathSciNet  Google Scholar 

  14. Cheddadi, I., Fučík, R., Prieto, M.I., Vohralik, M.: Guaranteed and robust a posteriori error estimates for singularly perturbed reaction-diffusion problems. ESAIM: Math. Model. Numer. Anal. 43, 867–888 (2009)

    Article  MathSciNet  Google Scholar 

  15. Churilova, M.A.: Vychislitel’nye svoistva funktsional’nyh aposteriornyh otsenok dlia statsionarnoi zadachi reaktsii-diffuzii (Numerical properties of functional a posteriori bounds for stationary reaction-diffusion problem). Vestnik SPbSU, Seria 1: Matematika, Mehanika, Astronomija 1(1), 68–78 (2014, in Russian)

    Google Scholar 

  16. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  17. Cottrell, J.A., Hughes, J.R., Bazilevs, Y.: Isogeometric Analysis. Toward Integration of CAD and FEA. Wiley, Chichester (2009)

    Google Scholar 

  18. Creusé, E., Nicaise, S.: A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods. J. Comput. Appl. Math. 234, 2903–2915 (2010)

    Article  MathSciNet  Google Scholar 

  19. Ern, A., Stephansen, A., Vohralik, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234(1), 114–130 (2009)

    Article  MathSciNet  Google Scholar 

  20. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    Article  MathSciNet  Google Scholar 

  21. Korneev, V.: Shemy metoda konechnyh elementov vysokih poriadkov tochnosti (The Finite Element Methods of High Order of Accuracy). Leningrad State University, Leningrad (1977, in Russian).

    Google Scholar 

  22. Korneev, V.G.: Simple algorithms for calculation of a posteriori error estimates for approximate solutions of elliptic equations. Uchenye zapiski Kazanskogo universiteta. Seria Fiziko-matematicheskie nauki 154(4), 11–27 (2011, in Russian)

    Google Scholar 

  23. Korneev, V.G.: Robust consistent a posteriori error majorants for approximate solutions of diffusion-reaction equations. Materialy 11-oi mezhdunarodnoi konferentsii “Setochnye metody dlia kraievyh zadach i prilozhenia”, Kazan State University, pp. 182–187 (2016, in Russian)

    Google Scholar 

  24. Korneev, V.G.: On the accuracy of a posteriori functional error majorants for approximate solutions of elliptic equations. Dokl. Math. 96(1), 380–383 (2017)

    Article  MathSciNet  Google Scholar 

  25. Korneev, V.G.: On the error control at numerical solution of reaction-diffusion equations, 6 Nov 2017. arXiv:1711.02054v1

    Google Scholar 

  26. Korneev, V.G., Langer U.: Dirichlet-Dirichlet Domain Decomposition Methods for Elliptic Problems, h and hp Finite Element Discretizations. World Scientific, New Jersey (2015)

    Book  Google Scholar 

  27. Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1985)

    Book  Google Scholar 

  28. Langer, U., Moore, S.E., Neumuller, M.: Space-time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Eng. 306, 342–363 (2016)

    Article  MathSciNet  Google Scholar 

  29. Nazarov, F.B., Poborchi, S.V.: Neravenstvo Puankare i ego prilozhenia (Poincare inequality and its applications). Publishing House of St. Petersburg State University, St. Petersburg (2012, in Russian)

    Google Scholar 

  30. Nochetto, R.H., Otarola, E., Salgado, A.J.: Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132, 85–130 (2016). https://doi.org/10.1007/s00211-015-0709-6

    Article  MathSciNet  Google Scholar 

  31. Oganesian, L.A., Ruhovets, L.A.: Variatsionno-raznostnyie metody reshenia ellipticheskih uravnenii (Variational-difference methods for solution of elliptic equations). Publishing House of Armenian Academy of Sciences of Armenian SSR, Yerevan (1979, in Russian)

    Google Scholar 

  32. Repin, S., Frolov, M.: Ob aposteriornyh otsenkah tochnosti priblizhennyh reshenii kraievyh zadach (On a posteriori error bounds for approximate solutions of elliptic boundary value problems). Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. 42(12), 1774–1787 (2002, in Russian)

    Google Scholar 

  33. Repin, S., Sauter, S.: Functional a posteriori estimates for the reaction-diffusion problem. C. R. Math. Acad. Sci. Paris 343(5), 349–354 (2006)

    Article  MathSciNet  Google Scholar 

  34. Scott, L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  35. Vejchodsk’y, T.: Guaranteed and locally computable a posteriori error estimate. IMA J. Numer. Anal. 26, 525–540 (2006). https://doi.org/10.1093/imanum/dri043

    Article  MathSciNet  Google Scholar 

  36. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73(247), 1139–1152 (2003)

    Article  MathSciNet  Google Scholar 

  37. Xu, J., Zou, J.: Some nonoverlapping domain decomposition methods. SIAM Rev. 40(4), 857–914 (1998)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Z.: Ultracovergence of the patch recovery technique. Math. Comput. 65(216), 1431–1437 (1996)

    Article  Google Scholar 

  39. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Eng. 101, 207–224 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korneev, V.G. (2019). On a Renewed Approach to A Posteriori Error Bounds for Approximate Solutions of Reaction-Diffusion Equations. In: Apel, T., Langer, U., Meyer, A., Steinbach, O. (eds) Advanced Finite Element Methods with Applications. FEM 2017. Lecture Notes in Computational Science and Engineering, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-14244-5_12

Download citation

Publish with us

Policies and ethics