Skip to main content

Security Analysis of SM9 Key Agreement and Encryption

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11449))

Included in the following conference series:

Abstract

SM9 is a Chinese cryptography standard that defines a set of identity-based cryptographic schemes from pairings. Although the SM9 key agreement protocol and the SM9 encryption scheme have been used for years, there is no public available security analysis of these two schemes. In this paper, we formally analyze the security of these two schemes in the random oracle model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  2. Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic constructions of identity-based and certificateless KEMs. J. Cryptol. 21, 178–199 (2008)

    Article  MathSciNet  Google Scholar 

  3. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 30–45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447

    Chapter  MATH  Google Scholar 

  4. Boneh, D., Boyen, X.: Efficient Selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_14

    Chapter  Google Scholar 

  5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  6. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric pairings - the role of \(\psi \) revisited. Discret. Appl. Math. 159, 1311–1322 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chen, L., Cheng, Z.: Security proof of Sakai-Kasahara’s identity-based encryption scheme. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 442–459. Springer, Heidelberg (2005). https://doi.org/10.1007/11586821_29

    Chapter  Google Scholar 

  8. Chen, L., Cheng, Z., Smart, N.: Identity-based key agreement protocols from pairings. Int. J. Inf. Secur. 6, 213–241 (2007)

    Article  Google Scholar 

  9. Cheng, Z., Chen, L.: On security proof of McCullagh-Barreto’s key agreement protocol and its variants. Int. J. Secur. Netw. 2, 251–259 (2007). Special Issue on Cryptography in Networks

    Article  Google Scholar 

  10. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33, 167–226 (2003)

    Article  MathSciNet  Google Scholar 

  11. Galbraith, S., Hess, F., Vercauteren, F.: Aspects of pairing inversion. IEEE Trans. Inf. Theory 54(12), 5719–5728 (2008)

    Article  MathSciNet  Google Scholar 

  12. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discret. Appl. Math. 156, 3113–3121 (2008)

    Article  MathSciNet  Google Scholar 

  13. GM/T 0044–2016. Identity-based cryptographic algorithms SM9 (2016)

    Google Scholar 

  14. ISO/IEC. Information technology - Secruity techniques - Key management - Part 3: Mechanisms using asymmetric techniques. ISO/IEC 11770–3:2015

    Google Scholar 

  15. ISO/IEC. Information technology - Secruity techniques - Digital signatures with appendix - Part 3: Discrete logarithm based mechanisms. ISO/IEC 14888–3:2018

    Google Scholar 

  16. ISO/IEC. Information technology - Security techniques - Cryptographic techniques based on elliptic curves - Part 5: Elliptic curve generation. ISO/IEC 15946–5:2009

    Google Scholar 

  17. ISO/IEC. Information technology - Security techniques - Encryption algorithms - Part 2: Asymmetric ciphers. ISO/IEC 18033–2:2006

    Google Scholar 

  18. ISO/IEC. Information technology - Security techniques - Encryption algorithms - Part 5: Identity-based ciphers. ISO/IEC 18033–5:2015

    Google Scholar 

  19. Lee, E., Lee, H., Park, C.: Efficient and generalized pairing computation on abelian varieties. IEEE Trans. Inf. Theory 55, 1793–1803 (2009)

    Article  MathSciNet  Google Scholar 

  20. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(11), 455–461 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Cheng .

Editor information

Editors and Affiliations

A    Proof of Lemma 1

A    Proof of Lemma 1

Proof:

If there is a polynomial time algorithm \(\mathcal {A}\,\,\)to solve the (\(\tau \)-1)-BCAA1\(_{i,2}\) problem, we can construct a polynomial time algorithm \(\mathcal {B}\,\,\)to solve the \(\tau \)-BDHI\(_2\) problem as follows. Given an instance of the \(\tau \)-BDHI\(_2\) problem

$$ (P_1, P_2, [x]P_2, [x^2]P_2,\ldots ,[x^\tau ] P_2), $$

\(\mathcal {B}\,\,\)works as follows to compute \(\hat{e}(P_1,P_2)^{1/x}\).

  1. 1.

    Randomly choose different \(h_0,\ldots ,h_{\tau -1}\in \mathbb {Z}_{r}^{*}\). Let f(z) be the polynomial

    $$ f(z)=\prod _{a=1}^{\tau -1}(z+h_a)=\sum _{a=0}^{\tau -1}c_az^a. $$

    The constant term \(c_0\) is non-zero because \(h_a\)’s are different and \(c_i\) is computable from \(h_a\)’s.

  2. 2.

    Set

    $$ Q_2=\sum _{a=0}^{\tau -1} [c_ax^a]P_2=[f(x)]P_2, $$

    and

    $$ [x]Q_2=\sum _{a=0}^{\tau -1} [c_{a}x^{a+1}]P_2=[xf(x)]P_2. $$
  3. 3.

    Set

    $$ f_b(z)=\frac{z-h_0}{z+h_b}f(z)=\sum _{a=0}^{\tau -1}d_a z^a, $$

    and compute

    $$ [\frac{x-h_0}{x+h_b}]Q_2 =[\frac{x-h_0}{x+h_b}f(x)]P_2=[f_b(x)]P_2=\sum _{a=0}^{\tau -1}[d_ax^a]P_2 $$

    for \(1\le b\le \tau -1\).

  4. 4.

    Set \(Q_1=\psi (Q_2)\) and pass the following instance of the (\(\tau \)-1)-BCAA1\(_{i,2}\) problem to \(\mathcal {A}\,\,\)

    $$ (Q_1, Q_2, \psi ([x-h_0]Q_2), h_0, (h_1\!+\!h_0, [\frac{x-h_0}{x+h_1}]Q_2), \ldots , (h_{\tau -1}\!+\!h_0, [\frac{x-h_0}{x+h_{\tau -1}}]Q_2)) $$

    if \(i=1\), or

    $$ (Q_1, Q_2, [x-h_0]Q_2, h_0, (h_1+h_0, [\frac{x-h_0}{x+h_1}]Q_2), \ldots , (h_{\tau -1}+h_0, [\frac{x-h_0}{x+h_{\tau -1}}]Q_2)) $$

    to get

    $$ T=\hat{e}(Q_1,Q_2)^{\frac{x-h_0}{x}}=\hat{e}(Q_1,Q_2)\cdot \hat{e}(Q_1,Q_2)^{-h_0/x}. $$
  5. 5.

    Note that

    $$ [\frac{1}{x}](Q_2-[c_0]P_2)=[\frac{1}{x}]([f(x)]P_2-[c_0]P_2)=\sum _{a=1}^{\tau -1}[c_ax^{a-1}]P_2. $$

    Set

    $$ T'=\sum _{a=1}^{\tau -1}[c_ax^{a-1}]P_2=[\frac{f(x)-c_0}{x}]P_2. $$

    Then,

    $$ T_0=\hat{e}(\psi (T'),Q_2+[c_0]P_2)=\hat{e}([f(x)-c_0]P_1,Q_2+[c_0]P_2)^{1/x} $$
    $$ =\,\hat{e}(Q_1, Q_2)^{1/x}\cdot \hat{e}(P_1, P_2)^{-c_0^2/x}. $$

    Finally, compute

    $$ \hat{e}(P_1,P_2)^{1/x}=((T/\hat{e}(Q_1,Q_2))^{-1/h_0}/T_0)^{1/c_0^2}. $$

    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Z. (2019). Security Analysis of SM9 Key Agreement and Encryption. In: Guo, F., Huang, X., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2018. Lecture Notes in Computer Science(), vol 11449. Springer, Cham. https://doi.org/10.1007/978-3-030-14234-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14234-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14233-9

  • Online ISBN: 978-3-030-14234-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics