Skip to main content

Light and Medium-Mass Nuclei on the Lattice

  • Chapter
  • First Online:
Nuclear Lattice Effective Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 957))

  • 1034 Accesses

Abstract

The success of the NLEFT description of light and medium-mass nuclei (with A ≥ 4) is dependent on the theoretical formalism and Monte Carlo (MC) techniques developed in the previous chapters. First and foremost, these include the EFT description of the nuclear force in terms of nucleons and pions (rather than quarks and gluons), and the expression of the transfer matrix formalism in terms of a path integral over auxiliary fields. The application of this theoretical framework to nuclei requires accurate computations of scattering phase shifts using the spherical wall method, and the use of an efficient Hybrid Monte Carlo (HMC) algorithm with favorable computational scaling in A. Observables are then computed by means of Euclidean time projection and effective cluster Hamiltonians. As we have shown in Chaps. 5 and 6, these methods overcome significant obstacles to a successful a priori treatment of multi-nucleon systems on the lattice. In this chapter, we will show how these components of NLEFT, when taken together, allow some of the key problems in nuclear theory to be addressed. It should be clear from our earlier presentation of the EFT framework and computational methods that NLEFT is a vigorously developing field of study where theory as well as algorithms are subject to continuous refinement. In this chapter, we shall therefore avoid putting focus on any given version of the NLEFT action and results, but rather focus on the general methods with which NLEFT can be applied to systems with A ≥ 4, and on the issues and problems encountered along the way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Hagen, M. Hjorth-Jensen, G.R. Jansen, R. Machleidt, T. Papenbrock, Evolution of shell structure in neutron-rich calcium isotopes. Phys. Rev. Lett. 109, 032502 (2012)

    Article  ADS  Google Scholar 

  2. E.D. Jurgenson, P. Maris, R.J. Furnstahl, P. Navrátil, W.E. Ormand, J.P. Vary, Structure of p-shell nuclei using three-nucleon interactions evolved with the similarity renormalization group. Phys. Rev. C 87(5), 054312 (2013)

    Google Scholar 

  3. R. Roth, J. Langhammer, A. Calci, S. Binder, P. Navrátil, Similarity-transformed chiral NN+3N interactions for the ab initio description of 12-C and 16-O. Phys. Rev. Lett. 107, 072501 (2011)

    Article  ADS  Google Scholar 

  4. E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Ab initio calculation of the Hoyle state. Phys. Rev. Lett. 106, 192501 (2011)

    Article  ADS  Google Scholar 

  5. T.A. Lähde, E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, G. Rupak, Uncertainties of Euclidean time extrapolation in lattice effective field theory. J. Phys. G 42, 034012 (2015)

    Article  ADS  Google Scholar 

  6. P. Navrátil, J.P. Vary, B.R. Barrett, Properties of C-12 in the ab initio nuclear shell model. Phys. Rev. Lett. 84, 5728 (2000)

    Article  ADS  Google Scholar 

  7. P. Maris, J.P. Vary, A.M. Shirokov, Ab initio no-core full configuration calculations of light nuclei. Phys. Rev. C 79, 014308 (2009)

    Article  ADS  Google Scholar 

  8. S. Gandolfi, F. Pederiva, S. Fantoni, K.E. Schmidt, Auxiliary field diffusion Monte Carlo calculation of nuclei with A ≤ 40 with tensor interactions. Phys. Rev. Lett. 99, 022507 (2007)

    Article  ADS  Google Scholar 

  9. E. Epelbaum, U.-G. Meißner, W. Glöckle, Nuclear forces in the chiral limit. Nucl. Phys. A 714, 535 (2003)

    Article  ADS  Google Scholar 

  10. E. Epelbaum, U.-G. Meißner, W. Glöckle, Further comments on nuclear forces in the chiral limit (2002). arXiv: nucl-th/0208040

    Google Scholar 

  11. S.R. Beane, M.J. Savage, Variation of fundamental couplings and nuclear forces. Nucl. Phys. A 713, 148 (2003)

    Article  ADS  Google Scholar 

  12. S.R. Beane, M.J. Savage, The Quark mass dependence of two nucleon systems. Nucl. Phys. A 717, 91 (2003)

    Article  ADS  Google Scholar 

  13. R. Pohl et al., The size of the proton. Nature 466, 213 (2010)

    Article  ADS  Google Scholar 

  14. I.T. Lorenz, H.-W. Hammer, U.-G. Meißner, The size of the proton – closing in on the radius puzzle. Eur. Phys. J. A 48, 151 (2012)

    Article  ADS  Google Scholar 

  15. L.A. Schaller, L. Schellenberg, T.Q. Phan, G. Piller, A. Ruetschi, H. Schneuwly, Nuclear charge radii of the carbon isotopes C-12, C-13 and C-14. Nucl. Phys. A 379, 523 (1982)

    Article  ADS  Google Scholar 

  16. J.C. Kim, R.S. Hicks, R. Yen, I.P. Auer, H.S. Caplan, J.C. Bergstrom, Electron scattering from O-17. Nucl. Phys. A 297, 301 (1978)

    Article  ADS  Google Scholar 

  17. W.J. Vermeer, M.T. Esat, J.A. Kuehner, R.H. Spear, A.M. Baxter, S. Hinds, Electric quadrupole moment of the first excited state of 12 C. Phys. Lett. 122B, 23 (1983)

    Article  ADS  Google Scholar 

  18. F. Ajzenberg-Selove, Energy levels of light nuclei A = 11-12. Nucl. Phys. A 506, 1 (1990)

    Article  ADS  Google Scholar 

  19. R. Moreh, W.C. Sellyey, D. Sutton, R. Vodhanel, Widths of the 6.92 and 7.12 MeV levels in O-16 and the influence of the effective temperature. Phys. Rev. C 31, 2314 (1985)

    Article  ADS  Google Scholar 

  20. F. Ajzenberg-Selove, Energy levels of light nuclei A = 16-17. Nucl. Phys. A 460, 1 (1986)

    Article  ADS  Google Scholar 

  21. M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter, Pair decay width of the Hoyle state and carbon production in stars. Phys. Rev. Lett. 105, 022501 (2010)

    Google Scholar 

  22. H. Miska et al., High resolution inelastic electron scattering and radiation widths of levels in 16 O. Phys. Lett. 58B, 155 (1975)

    Article  ADS  Google Scholar 

  23. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. 1 (W. A. Benjamin, New York, 1969)

    MATH  Google Scholar 

  24. M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, U.-G. Meißner, Microscopic clustering in light nuclei. Rev. Mod. Phys. 90, 035004 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.A. Wheeler, Molecular viewpoints in nuclear structure. Phys. Rev. 52, 1083 (1937)

    Article  ADS  Google Scholar 

  26. D.M. Dennison, Energy levels of the O-16 nucleus. Phys. Rev. 96, 378 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Robson, Evidence for the tetrahedral nature of O-16. Phys. Rev. Lett. 42, 876 (1979)

    Article  ADS  Google Scholar 

  28. W. Bauhoff, H. Schultheis, R. Schultheis, Alpha cluster model and the spectrum of O-16. Phys. Rev. C 29, 1046 (1984)

    Article  ADS  Google Scholar 

  29. A. Tohsaki, H. Horiuchi, P. Schuck, G. Ropke, Alpha cluster condensation in C-12 and O-16. Phys. Rev. Lett. 87, 192501 (2001)

    Article  ADS  Google Scholar 

  30. R. Bijker, Algebraic cluster model with tetrahedral symmetry. AIP Conf. Proc. 1323, 28 (2010)

    Article  ADS  Google Scholar 

  31. M. Freer [CHARISSA Collaboration], Alpha-particle states in O-16 and Ne-20. J. Phys. G 31, S1795 (2005)

    Google Scholar 

  32. C.J. Hogan, Why the universe is just so. Rev. Mod. Phys. 72, 1149 (2000)

    Article  ADS  Google Scholar 

  33. A.N. Schellekens, Life at the interface of particle physics and string theory. Rev. Mod. Phys. 85, 1491 (2013)

    Article  ADS  Google Scholar 

  34. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, Chicago, 1988)

    Google Scholar 

  35. D. Arnett, Supernovae and Nucleosynthesis (Princeton University Press, Princeton, 1996)

    Google Scholar 

  36. F. Hoyle, On nuclear reactions occuring in very hot stars. 1. The synthesis of elements from carbon to nickel. Astrophys. J. Suppl. 1, 121 (1954)

    Article  ADS  Google Scholar 

  37. H. Oberhummer, A. Csoto, H. Schlattl, Stellar production rates of carbon and its abundance in the universe. Science 289, 88 (2000)

    Article  ADS  Google Scholar 

  38. E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.-G. Meißner, Viability of carbon-based life as a function of the light quark mass. Phys. Rev. Lett. 110, 112502 (2013)

    Article  ADS  Google Scholar 

  39. E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.-G. Meißner, Dependence of the triple-alpha process on the fundamental constants of nature. Eur. Phys. J. A 49, 82 (2013)

    Article  ADS  Google Scholar 

  40. J.C. Berengut, E. Epelbaum, V.V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, J.R. Pelaez, Varying the light quark mass: impact on the nuclear force and Big Bang nucleosynthesis. Phys. Rev. D 87, 085018 (2013)

    Article  ADS  Google Scholar 

  41. P.F. Bedaque, T. Luu, L. Platter, Quark mass variation constraints from Big Bang nucleosynthesis. Phys. Rev. C 83, 045803 (2011)

    Article  ADS  Google Scholar 

  42. V. Bernard, Chiral perturbation theory and baryon properties. Prog. Part. Nucl. Phys. 60, 82 (2008)

    Article  ADS  Google Scholar 

  43. H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937)

    Google Scholar 

  44. R.P. Feynman, Forces in molecules. Phys. Rev. 56, 340 (1939)

    Article  ADS  Google Scholar 

  45. M. Frink, U.-G. Meißner, I. Scheller, Baryon masses, chiral extrapolations, and all that. Eur. Phys. J. A 24, 395 (2005)

    Article  ADS  Google Scholar 

  46. G. Colangelo et al., Review of lattice results concerning low energy particle physics. Eur. Phys. J. C 71, 1695 (2011)

    Article  ADS  Google Scholar 

  47. J. Gasser, H. Leutwyler, Chiral perturbation theory to one loop. Ann. Phys. 158, 142 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  48. J. Bijnens, G. Ecker, Mesonic low-energy constants. Ann. Rev. Nucl. Part. Sci. 64, 149 (2014)

    Article  ADS  Google Scholar 

  49. S. Weinberg, Facing Up (Harvard University Press, Cambridge, 2001)

    MATH  Google Scholar 

  50. B. Carter, in Confrontation of Cosmological Theories with Observation, ed. by M.S. Longair (Reidel, Dordrecht, 1974)

    Google Scholar 

  51. H. Kragh, An anthropic myth: Fred Hoyle’s carbon-12 resonance level. Arch. Hist. Exact Sci. 64, 721 (2010)

    Article  Google Scholar 

  52. U.-G. Meißner, Anthropic considerations in nuclear physics. Sci. Bull. 60, 43 (2015)

    Article  Google Scholar 

  53. H. Oberhummer, A. Csoto, H. Schlattl, Fine tuning carbon based life in the universe by the triple alpha process in red giants, in The Future of the Universe and the Future of Our Civilization (World Scientific, Singapore, 2000), pp. 197–205

    Google Scholar 

  54. L. Huang, F.C. Adams, E. Grohs, Sensitivity of carbon and oxygen yields to the triple-alpha resonance in massive stars. Astropart. Phys. 105, 103 (2019)

    Article  Google Scholar 

  55. S.R. Beane, P.F. Bedaque, K. Orginos, M.J. Savage, Nucleon-nucleon scattering from fully-dynamical lattice QCD. Phys. Rev. Lett. 97, 012001 (2006)

    Article  ADS  Google Scholar 

  56. V. Baru, E. Epelbaum, A.A. Filin, J. Gegelia, Low-energy theorems for nucleon-nucleon scattering at unphysical pion masses. Phys. Rev. C 92, 014001 (2015)

    Article  ADS  Google Scholar 

  57. E. Epelbaum, U.-G. Meißner, W. Glöckle, C. Elster, Resonance saturation for four nucleon operators. Phys. Rev. C 65, 044001 (2002)

    Article  ADS  Google Scholar 

  58. E. Epelbaum, J. Gegelia, The two-nucleon problem in EFT reformulated: pion and nucleon masses as soft and hard scales. PoS CD 12, 090 (2013)

    Google Scholar 

  59. K.M. Nollett, S.C. Pieper, R.B. Wiringa, J. Carlson, G.M. Hale, Quantum Monte Carlo calculations of neutron-alpha scattering. Phys. Rev. Lett. 99, 022502 (2007)

    Article  ADS  Google Scholar 

  60. S. Quaglioni, P. Navrátil, Ab initio many-body calculations of n-H-3, n-He-4, p-He-3,4,and and n-Be-10 scattering. Phys. Rev. Lett. 101, 092501 (2008)

    Article  ADS  Google Scholar 

  61. P. Navrátil, S. Quaglioni, Ab initio many-body calculations of the 3H(d,n)4He and 3He(d,p)4He fusion. Phys. Rev. Lett. 108, 042503 (2012)

    Article  ADS  Google Scholar 

  62. P. Navrátil, R. Roth, S. Quaglioni, Ab initio many-body calculation of the 7Be(p, γ)8B radiative capture. Phys. Lett. B 704, 379 (2011)

    Article  ADS  Google Scholar 

  63. G. Hupin, J. Langhammer, P. Navrátil, S. Quaglioni, A. Calci, R. Roth, Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces. Phys. Rev. C 88, 054622 (2013)

    Article  ADS  Google Scholar 

  64. M. Fink, F.K. Roepke, W. Hillebrandt, I.R. Seitenzahl, S.A. Sim, M. Kromer, Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? Astron. Astrophys. 514, A53 (2010)

    Article  ADS  Google Scholar 

  65. K.J. Shen, L. Bildsten, The ignition of carbon detonations via converging shock waves in white dwarfs. Astrophys. J. 785, 61 (2014)

    Article  ADS  Google Scholar 

  66. N.P. Heydenburg, G.M. Temmer, Alpha-alpha scattering at low energies. Phys. Rev. 104, 123 (1956)

    Article  ADS  Google Scholar 

  67. R. Nilson, W.K. Jentschke, G.R. Briggs, R.O. Kerman, J.N. Snyder, Investigation of excited states in Be-8 by alpha-particle scattering from He. Phys. Rev. 109, 850 (1958)

    Article  ADS  Google Scholar 

  68. S.A. Afzal, A.A.Z. Ahmad, S. Ali, Systematic survey of the alpha-alpha interaction. Rev. Mod. Phys. 41, 247 (1969)

    Article  ADS  Google Scholar 

  69. A. Rokash, M. Pine, S. Elhatisari, D. Lee, E. Epelbaum, H. Krebs, Scattering cluster wave functions on the lattice using the adiabatic projection method. Phys. Rev. C 92(5), 054612 (2015)

    Google Scholar 

  70. S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T.A. Lähde, T. Luu, U.-G. Meißner, Ab initio alpha-alpha scattering. Nature 528, 111 (2015)

    Article  ADS  Google Scholar 

  71. R. Higa, H.-W. Hammer, U. van Kolck, alpha alpha Scattering in halo effective field theory. Nucl. Phys. A 809, 171 (2008)

    Google Scholar 

  72. G. Hupin, S. Quaglioni, P. Navrátil, Predictive theory for elastic scattering and recoil of protons from 4He. Phys. Rev. C 90(6), 061601 (2014)

    Google Scholar 

  73. W.A. Fowler, Experimental and theoretical nuclear astrophysics: the quest for the origin of the elements. Rev. Mod. Phys. 56, 149 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lähde, T.A., Meißner, UG. (2019). Light and Medium-Mass Nuclei on the Lattice. In: Nuclear Lattice Effective Field Theory. Lecture Notes in Physics, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-030-14189-9_7

Download citation

Publish with us

Policies and ethics