Skip to main content

Lattice Monte Carlo

  • Chapter
  • First Online:
Nuclear Lattice Effective Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 957))

  • 1045 Accesses

Abstract

Thus far, we have developed the path integral and transfer matrix in Chap. 3 and shown how to apply this formalism to the two-nucleon and three-nucleon forces in NLEFT in Chap. 4. In Chap. 5, we have discussed the calculation of observables in the two- and three-nucleon sectors, and shown how these can be used to fix the free parameters of the NLEFT interactions, which allows the theory to be predictive for A ≥ 4. However, we are still faced with the difficulty that most analytical and numerical methods become impractical for the multi-nucleon problem (for systems of a realistic size) due to adverse exponential scaling of the computational effort with nucleon number A. In this chapter, we shall establish viable computational methods for A ≥ 4 which, given sufficiently realistic nuclear interactions, can be applied to a large range of heavier nuclei as well. In the Euclidean time projection technique, the energy eigenvalues and wave functions of the low-lying spectrum of the Hamiltonian are computed by repeatedly operating on a suitably chosen “trial state” by the operator \(\exp (-\delta H)\), which acts as a “low-energy filter”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Lee, Ground state energy of spin-1/2 fermions in the unitary limit. Phys. Rev. B 73, 115112 (2006)

    Article  ADS  Google Scholar 

  2. D. Lee, Pressure inequalities for nuclear and neutron matter. Phys. Rev. C 71, 044001 (2005)

    Article  ADS  Google Scholar 

  3. J.W. Chen, D. Lee, T. Schäfer, Inequalities for light nuclei in the Wigner symmetry limit. Phys. Rev. Lett. 93, 242302 (2004)

    Article  ADS  Google Scholar 

  4. I. Sick, Precise root-mean-square radius of He-4. Phys. Rev. C 77, 041302 (2008)

    Article  ADS  Google Scholar 

  5. D. Lee, B. Borasoy, T. Schäfer, Nuclear lattice simulations with chiral effective field theory. Phys. Rev. C 70, 014007 (2004)

    Article  ADS  Google Scholar 

  6. R.T. Scalettar, D.J. Scalapino, R.L. Sugar, D. Toussaint, Hybrid molecular-dynamics algorithm for the numerical simulation of many-electron systems. Phys. Rev. B 36, 8632 (1987)

    Article  ADS  Google Scholar 

  7. R. Brower, C. Rebbi, D. Schaich, Hybrid Monte Carlo simulation on the graphene hexagonal lattice, in Proceedings of the XXIX International Symposium on Lattice Field Theory (Lattice 2011), 056 (2011)

    Google Scholar 

  8. P.V. Buividovich, M.I. Polikarpov, Monte-Carlo study of the electron transport properties of monolayer graphene within the tight-binding model. Phys. Rev. B 86, 245117 (2012)

    Article  ADS  Google Scholar 

  9. D. Smith, L. von Smekal, Monte-Carlo simulation of the tight-binding model of graph-ene with partially screened Coulomb interactions. Phys. Rev. B 89(19), 195429 (2014)

    Google Scholar 

  10. T. Luu, T.A. Lähde, Quantum Monte Carlo calculations for carbon nanotubes. Phys. Rev. B 93(15), 155106 (2016)

    Google Scholar 

  11. S. Beyl, F. Goth, F.F. Assaad, Revisiting the hybrid quantum Monte Carlo method for Hubbard and electron-phonon models. Phys. Rev. B 97(8), 085144 (2018)

    Google Scholar 

  12. A. Bulgac, J.E. Drut, P. Magierski, Spin 1/2 Fermions in the unitary regime: a superfluid of a new type. Phys. Rev. Lett. 96, 090404 (2006)

    Article  ADS  Google Scholar 

  13. A. Bulgac, J.E. Drut, P. Magierski, Quantum Monte Carlo simulations of the BCS-BEC crossover at finite temperature. Phys. Rev. A 78, 023625 (2008)

    Article  ADS  Google Scholar 

  14. J.E. Drut, T.A. Lähde, T. Ten, Momentum distribution and contact of the unitary fermi gas. Phys. Rev. Lett. 106, 205302 (2011)

    Article  ADS  Google Scholar 

  15. J.E. Drut, T.A. Lähde, G. Wlazłowski, P. Magierski, The equation of state of the unitary fermi gas: an update on lattice calculations. Phys. Rev. A 85, 051601 (2012)

    Article  ADS  Google Scholar 

  16. G. Wlazłowski, P. Magierski, J.E. Drut, Shear viscosity of a unitary fermi gas. Phys. Rev. Lett. 109, 020406 (2012)

    Article  ADS  Google Scholar 

  17. T.A. Lähde, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, G. Rupak, Lattice effective field theory for medium-mass nuclei. Phys. Lett. B 732, 110 (2014)

    Article  ADS  Google Scholar 

  18. T.A. Lähde, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, G. Rupak, Uncertainties of Euclidean time extrapolation in lattice effective field theory. J. Phys. G 42(3), 034012 (2015)

    Article  ADS  Google Scholar 

  19. E.Y. Loh, J.E. Gubernatis, R.T. Scalettar, S.R. White, D.J. Scalapino, R.L. Sugar, Sign problem in the numerical simulation of many-electron systems. Phys. Rev. B 41, 9301 (1990)

    Article  ADS  Google Scholar 

  20. S. Chandrasekharan, U.J. Wiese, Meron cluster solution of a fermion sign problem. Phys. Rev. Lett. 83, 3116 (1999)

    Article  ADS  Google Scholar 

  21. J.M. Hammersley, D.C. Handscomb, Monte Carlo Methods. Methuen’s Monographs (Methuen, London, 1975)

    Google Scholar 

  22. A.B. Clarke, R.L. Disney, Probability and Random Processes: A First Course with Applications (Wiley, New York, 1985)

    MATH  Google Scholar 

  23. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  24. A. Ukawa, M. Fukugita, Langevin simulation including dynamical quark loops. Phys. Rev. Lett. 55, 1854 (1985)

    Article  ADS  Google Scholar 

  25. G.G. Batrouni, G.R. Katz, A.S. Kronfeld, G.P. Lepage, B. Svetitsky, K.G. Wilson, Langevin simulations of lattice field theories. Phys. Rev. D 32, 2736 (1985)

    Article  ADS  Google Scholar 

  26. G. Parisi, On complex probabilities. Phys. Lett. 131B, 393 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  27. J.R. Klauder, Stochastic quantization. Acta Phys. Austriaca Suppl. 25, 251 (1983)

    Google Scholar 

  28. E. Seiler, Status of complex langevin. EPJ Web Conf. 175, 01019 (2018)

    Article  Google Scholar 

  29. D.J.E. Callaway, A. Rahman, The microcanonical ensemble: a new formulation of lattice gauge theory. Phys. Rev. Lett. 49, 613 (1982)

    Article  ADS  Google Scholar 

  30. D.J.E. Callaway, A. Rahman, Lattice gauge theory in microcanonical ensemble. Phys. Rev. D 28,1506 (1983)

    Article  ADS  Google Scholar 

  31. M. Creutz, Microcanonical Monte Carlo simulation. Phys. Rev. Lett. 50, 1411 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Polonyi, H.W. Wyld, Microcanonical simulation of fermionic systems. Phys. Rev. Lett. 51, 2257 (1983) [Erratum: Phys. Rev. Lett. 52 (1984) 401]

    Google Scholar 

  33. S. Duane, Stochastic quantization versus the microcanonical ensemble: getting the best of both worlds. Nucl. Phys. B 257, 652 (1985)

    Article  ADS  Google Scholar 

  34. S. Duane, J.B. Kogut, The theory of hybrid stochastic algorithms. Nucl. Phys. B 275, 398 (1986)

    Article  ADS  Google Scholar 

  35. S.A. Gottlieb, W. Liu, D. Toussaint, R.L. Renken, R.L. Sugar, Hybrid molecular dynamics algorithms for the numerical simulation of quantum chromodynamics. Phys. Rev. D 35, 2531 (1987)

    Article  ADS  Google Scholar 

  36. S. Duane, A.D. Kennedy, B.J. Pendleton, D. Roweth, Hybrid Monte Carlo. Phys. Lett. B 195, 216 (1987)

    ADS  Google Scholar 

  37. E. Forest, R.D. Ruth, Fourth order symplectic integration. Physica D 43, 105 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  38. H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150, 262 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  39. J.C. Sexton, D.H. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo algorithm. Nucl. Phys. B 380, 665 (1992)

    Article  ADS  Google Scholar 

  40. M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many body problems. Commun. Math. Phys. 51, 183 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  41. T. Takaishi, P. de Forcrand, Testing and tuning new symplectic integrators for hybrid Monte Carlo algorithm in lattice QCD. Phys. Rev. E 73, 036706 (2006)

    Article  ADS  Google Scholar 

  42. I.P. Omelyan, I.M. Mryglod, R. Folk, Optimized Verlet-like algorithms for molecular dynamics simulations. Phys. Rev. E 65, 056706 (2002)

    Article  ADS  Google Scholar 

  43. I.P. Omelyan, I.M. Mryglod, R. Folk, Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations. Comput. Phys. Commun. 151, 272 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  44. M. Creutz, Global Monte Carlo algorithms for many-fermion systems. Phys. Rev. D 38, 1228 (1988)

    Article  ADS  Google Scholar 

  45. S. Gupta, A. Irback, F. Karsch, B. Petersson, The acceptance probability in the hybrid Monte Carlo method. Phys. Lett. B 242, 437 (1990)

    Article  ADS  Google Scholar 

  46. T. Takaishi, Choice of integrator in the hybrid Monte Carlo algorithm. Comput. Phys. Commun. 133, 6 (2000)

    Article  ADS  Google Scholar 

  47. B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Lattice simulations for light nuclei: chiral effective field theory at leading order. Eur. Phys. J. A 31, 105 (2007)

    Article  ADS  Google Scholar 

  48. G. Rupak, D. Lee, Radiative capture reactions in lattice effective field theory. Phys. Rev. Lett. 111(3), 032502 (2013)

    Google Scholar 

  49. M. Pine, D. Lee, G. Rupak, Adiabatic projection method for scattering and reactions on the lattice. Eur. Phys. J. A 49, 151 (2013)

    Article  ADS  Google Scholar 

  50. G.V. Skorniakov, K.A. Ter-Martirosian, Three body problem for short range forces. 1. Scattering of low energy neutrons by deuterons. Sov. Phys. JETP 4, 648 (1957) [J. Exp. Theor. Phys. (U.S.S.R.) 31, 775 (1956)]

    Google Scholar 

  51. P.F. Bedaque, U. van Kolck, Nucleon deuteron scattering from an effective field theory. Phys. Lett. B 428, 221 (1998)

    Article  ADS  Google Scholar 

  52. P.F. Bedaque, H.W. Hammer, U. van Kolck, Effective theory for neutron deuteron scattering: energy dependence. Phys. Rev. C 58, R641 (1998)

    Article  ADS  Google Scholar 

  53. E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Ab initio calculation of the Hoyle state. Phys. Rev. Lett. 106, 192501 (2011)

    Article  ADS  Google Scholar 

  54. E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.-G. Meißner, Structure and rotations of the Hoyle state. Phys. Rev. Lett. 109, 252501 (2012)

    Article  ADS  Google Scholar 

  55. A. Rokash, M. Pine, S. Elhatisari, D. Lee, E. Epelbaum, H. Krebs, Scattering cluster wave functions on the lattice using the adiabatic projection method. Phys. Rev. C 92, 054612 (2015)

    Article  ADS  Google Scholar 

  56. S. Bour, S. Koenig, D. Lee, H.-W. Hammer, U.-G. Meißner, Topological phases for bound states moving in a finite volume. Phys. Rev. D 84, 091503 (2011)

    Article  ADS  Google Scholar 

  57. S. Bour, H.-W. Hammer, D. Lee, U.-G. Meißner, Benchmark calculations for elastic fermion-dimer scattering. Phys. Rev. C 86, 034003 (2012)

    Article  ADS  Google Scholar 

  58. A. Rokash, E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Finite volume effects in low-energy neutron-deuteron scattering. J. Phys. G 41, 015105 (2014)

    Article  ADS  Google Scholar 

  59. M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states. Commun. Math. Phys. 104, 177 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  60. S. Koenig, D. Lee, H.-W. Hammer, Volume dependence of bound states with angular momentum. Phys. Rev. Lett. 107, 112001 (2011)

    Article  ADS  Google Scholar 

  61. S. Koenig, D. Lee, H.-W. Hammer, Non-relativistic bound states in a finite volume. Ann. Phys. 327, 1450 (2012)

    Article  ADS  Google Scholar 

  62. P.F. Bedaque, H.W. Griesshammer, Quartet S wave neutron deuteron scattering in effective field theory. Nucl. Phys. A 671, 357 (2000)

    Article  ADS  Google Scholar 

  63. F. Gabbiani, P.F. Bedaque, H.W. Griesshammer, Higher partial waves in an effective field theory approach to nd scattering. Nucl. Phys. A 675, 601 (2000)

    Article  ADS  Google Scholar 

  64. G. Rupak, X.W. Kong, Quartet S-wave p-d scattering in EFT. Nucl. Phys. A 717, 73 (2003)

    Article  ADS  Google Scholar 

  65. G. Rupak, R. Higa, Model-independent calculation of radiative neutron capture on lithium-7. Phys. Rev. Lett. 106, 222501 (2011)

    Article  ADS  Google Scholar 

  66. L. Fernando, R. Higa, G. Rupak, Resonance contribution to radiative neutron capture on lithium-7. Eur. Phys. J. A 48, 24 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lähde, T.A., Meißner, UG. (2019). Lattice Monte Carlo. In: Nuclear Lattice Effective Field Theory. Lecture Notes in Physics, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-030-14189-9_6

Download citation

Publish with us

Policies and ethics