Skip to main content

Lattice Formulations

  • Chapter
  • First Online:
Nuclear Lattice Effective Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 957))

  • 1031 Accesses

Abstract

In Chap. 1, we introduced the concept of EFT, and in Chap. 2 we applied the EFT method to the low-energy sector of QCD. This led us to the framework of chiral EFT and provided us with a description of the interactions between nucleons, which is valid at low energies, as encountered by nucleons in nuclei. In order to use chiral EFT to predict the properties of nuclei and make contact with phenomena of current interest, we need the ability to compute spectra, transitions and other properties of many-body systems (such as nuclei or nuclear matter) starting from the chiral EFT Hamiltonian. Not surprisingly, there are several different choices one can make for the calculational method with which to describe interacting low-energy nucleons. More precisely, there are essentially two pathways to proceed if one wants to base the many-body calculation on the forces discussed in the preceding chapter. One much studied type of approach is to use these chiral continuum forces in combination with a standard and well-developed few- or many-body method, such as the Faddeev-Yakubovsky integral equations for few-nucleon systems or the (no-core) shell model, coupled cluster theory, etc. for larger systems. Such approaches are vigorously pursued by many researchers world-wide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Montvay, C. Urbach, Exploratory investigation of nucleon-nucleon interactions using Euclidean Monte Carlo simulations. Eur. Phys. J. A 48, 38 (2012)

    Article  ADS  Google Scholar 

  2. R.L. Stratonovich, On a method of calculating quantum distribution functions. Sov. Phys. Dokl. 2, 416 (1958)

    ADS  MATH  Google Scholar 

  3. J. Hubbard, Calculation of partition functions. Phys. Rev. Lett. 3, 77 (1959)

    Article  ADS  Google Scholar 

  4. M. Creutz, Transfer matrices and lattice fermions at finite density. Found. Phys. 30, 487 (2000)

    Article  MathSciNet  Google Scholar 

  5. K. Góral, T. Köhler, S.A. Gardiner, E. Tiesinga, P.S. Julienne, Adiabatic association of ultracold molecules via magnetic field tunable interactions. J. Phys. B 37, 3457 (2004)

    Article  ADS  Google Scholar 

  6. M.H. Szymanska, K. Góral, T. Köhler, K. Burnett, Conventional character of the BCS-BEC cross-over in ultra-cold gases of 40K. Phys. Rev. A 72, 013610 (2005)

    Article  ADS  Google Scholar 

  7. N. Nygaard, R. Piil, K. Mølmer, Feshbach molecules in a one-dimensional optical lattice. Phys. Rev. A 77, 021601(R) (2008)

    Google Scholar 

  8. S. Chandrasekharan, Fermion bag approach to fermion sign problems. Eur. Phys. J. A 49, 90 (2013)

    Article  ADS  Google Scholar 

  9. J.W. Chen, D.B. Kaplan, A lattice theory for low-energy fermions at finite chemical potential. Phys. Rev. Lett. 92, 257002 (2004)

    Article  ADS  Google Scholar 

  10. D. Lee, B. Borasoy, T. Schäfer, Nuclear lattice simulations with chiral effective field theory. Phys. Rev. C 70, 014007 (2004)

    Article  ADS  Google Scholar 

  11. D. Lee, T. Schäfer, Neutron matter on the lattice with pionless effective field theory. Phys. Rev. C 72, 024006 (2005)

    Article  ADS  Google Scholar 

  12. D. Lee, T. Schäfer, Cold dilute neutron matter on the lattice. I. Lattice virial coefficients and large scattering lengths. Phys. Rev. C 73, 015201 (2006)

    Google Scholar 

  13. D. Lee, T. Schäfer, Cold dilute neutron matter on the lattice. II. Results in the unitary limit. Phys. Rev. C 73, 015202 (2006)

    Article  Google Scholar 

  14. T. Abe, R. Seki, Lattice calculation of thermal properties of low-density neutron matter with NN effective field theory. Phys. Rev. C 79, 054002 (2009)

    Article  ADS  Google Scholar 

  15. T. Abe, R. Seki, From low-density neutron matter to the unitary limit. Phys. Rev. C 79, 054003 (2009)

    Article  ADS  Google Scholar 

  16. D. Lee, The ground state energy at unitarity. Phys. Rev. C 78, 024001 (2008)

    Article  ADS  Google Scholar 

  17. J.E. Hirsch, Discrete Hubbard-Stratonovich transformation for fermion lattice models. Phys. Rev. B 28, 4059 (1983)

    Article  ADS  Google Scholar 

  18. C. Körber, E. Berkowitz, T. Luu, Sampling general N-body interactions with auxiliary fields. Europhys. Lett. 119(6), 60006 (2017)

    Article  ADS  Google Scholar 

  19. P.F. Bedaque, H.W. Hammer, U. van Kolck, Renormalization of the three-body system with short range interactions. Phys. Rev. Lett. 82, 463 (1999)

    Article  ADS  Google Scholar 

  20. P.F. Bedaque, H.W. Hammer, U. van Kolck, The three boson system with short range interactions. Nucl. Phys. A 646, 444 (1999)

    Article  ADS  Google Scholar 

  21. P.F. Bedaque, H.W. Hammer, U. van Kolck, Effective theory of the triton. Nucl. Phys. A 676, 357 (2000)

    Article  ADS  Google Scholar 

  22. E. Epelbaum, J. Gegelia, U.-G. Meißner, D.L. Yao, Renormalization of the three-boson system with short-range interactions revisited. Eur. Phys. J. A 53, 98 (2017)

    Article  ADS  Google Scholar 

  23. J.W. Chen, D. Lee, T. Schäfer, Inequalities for light nuclei in the Wigner symmetry limit. Phys. Rev. Lett. 93, 242302 (2004)

    Article  ADS  Google Scholar 

  24. R.C. Johnson, Angular momentum on a lattice. Phys. Lett. 114B, 147 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. B. Berg, A. Billoire, Glueball spectroscopy in four-dimensional SU(3) lattice gauge theory. 1. Nucl. Phys. B 221, 109 (1983)

    Google Scholar 

  26. J.E. Mandula, G. Zweig, J. Govaerts, Representations of the rotation reflection symmetry group of the four-dimensional cubic lattice. Nucl. Phys. B 228, 91 (1983)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lähde, T.A., Meißner, UG. (2019). Lattice Formulations. In: Nuclear Lattice Effective Field Theory. Lecture Notes in Physics, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-030-14189-9_3

Download citation

Publish with us

Policies and ethics