Advertisement

Recycling Processes for the Recovery of Metal from E-waste of the LED Industry

  • Emanuele Caroline Araújo dos Santos
  • Tamires Augustin da Silveira
  • Angéli Viviani Colling
  • Carlos Alberto Mendes MoraesEmail author
  • Feliciane Andrade Brehm
Chapter
  • 622 Downloads
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 33)

Abstract

Increasingly used today, the light-emitting diode (LED) technology today replaces other technologies and has gained a notable market share. This growth in use implies an increased demand for specific materials used in LED manufacturer, aiming at improved performance of devices. However, most materials used in LED manufacture are considered critical in terms of availability, since they are increasingly sought after by the industry. Chemical elements like gallium (Ga) and indium (In), rare earth elements like yttrium (Y) and cerium (Ce), and precious metals such as gold (Au) and silver (Ag) are used in LED devices. An additional difficulty concerns the methods used to sort and reuse these materials, especially due to the small amounts used. This poses a considerable challenge in the full recycling of LED devices. Research is carried out to develop sorting and recovery methods for critical metals generated during the production of LED devices and at the end of life of these devices. Some of the most important methods developed for this purpose include pyrometallurgical (pyrolysis), hydrometallurgical (acid leaching), and biotechnological technologies (microbial leaching).

Keywords

LED industry LED elements/metals Recovery chain Recycling Recovery/reclamation process E-waste 

References

  1. Ascurra RE (2013) Eficiência Elétrica em Iluminação Pública Utilizando Tecnologia Led: um Estudo de Caso. Dissertation, Universidade Federal de Mato Grosso, Cuiabá, MT, BrazilGoogle Scholar
  2. Associação Brasileira da Indústria de Iluminação (ABILUX) (2017) Guia LED, 5ª edn. http://www.abilux.com.br/portal/pdf/guia_led_5ed.pdf. Accessed 10 June 2017
  3. Ayres RU, Pieró LT (2017) Material efficiency: rare and critical metals. The Royal Society Publishing, FontainebleauGoogle Scholar
  4. Bastos FC (2011) Análise da Política de Banimento de Lâmpadas Incandescentes do Mercado Brasileiro. Dissertation, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BrazilGoogle Scholar
  5. Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22CrossRefGoogle Scholar
  6. Buchert M, Schuler D, Bleher D (2009) Critical metals for future sustainable – technologies and their recycling potential. UNEP, ParisGoogle Scholar
  7. Bullough JD (2003) Lighting answers: LED lighting systems. Lighting Research Center. v. 7, http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/led/whatisanled.asp. Accessed 15 Feb 2018
  8. Callister WD, Rethwisch DG (2013) Ciência e engenharia de materiais: uma introdução, 8th edn. LTC, Rio de JaneiroGoogle Scholar
  9. Carvalho TCMB, Xavier LH (2014) Gestão de Resíduos Eletroeletrônicos: Uma Abordagem Prática para a Sustentabilidade, 1st edn. Elsevier, XVII, Rio de JaneiroGoogle Scholar
  10. Castro DB (2013) Iluminação por LEDs. Especialize. Revista Especialize On-line IPOG. 5(1). https://www.ipog.edu.br/revista-especialize-online/edicao-n5-2013/iluminacao-por-leds. Accessed 10 Feb 2018
  11. CEMPRE (Compromisso Empresarial em Reciclagem) (2018) Lâmpadas de LED a Caminho da Reciclagem Economicamente Viável. http://cempre.org.br/informa-mais/id/51/lampadas-de-led-a-caminho-da-reciclagem-economicamente-viavel. Accessed 6 Feb 2018
  12. Cervi M (2005) Rede de Iluminação Semicondutora para Aplicação Automotiva. Dissertation, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, BrazilGoogle Scholar
  13. Cycled (2017) End of life. http://www.cyc-led.eu/End%20of%20life.html. Accessed 27 May 2017
  14. Denbaars SP (1997) Gallium-nitride-based materials for blue to ultraviolet optoelectronics devices. Proc IEEE 85(11):1740–1749CrossRefGoogle Scholar
  15. Dias MP (2012) Avaliação do Emprego de Um Pré-Regulador Boostde Baixa Frequência do Acionamento de Leds de Iluminação. Dissertion, Universidade Federal de Juiz de Fora, Juíz de Fora, MG, BrazilGoogle Scholar
  16. Directive 2012/19/UE of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). Official J L 197, 59. http://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=OJ:L:2012:197:FULL&from=PT. Accessed 12 Aug 2017
  17. Fecomércio SP (2016) COMÉRCIO registra alta de mais de 100% nas vendas de lâmpadas de LED. http://www.fecomercio.com.br/noticia/comercio-registra-alta-de-mais-de-100-nas-vendas-de-lampadas-de-led. Accessed 14 Oct 2017
  18. Gassmann A, Zimmermann J, Gauß R, Stauber R Gutfleisch O (2016) Led lamps recycling technology for a circular economy. Latest LPR Megazine. LpR Article, N. Aug 25, 2016. https://www.led-professional.com/resources-1/articles/led-lampsrecycling-technologyfor-a-circular-economy. Accessed 15 July 2018
  19. Gois A (2008) LEDs na Iluminação Arquitetural Lighting Now Ed 1. http://www.ebah.com.br/content/ABAAAe77YAD/livro-leds-na-iluminacao-arquitetural?. Accessed 15 July 2018
  20. Jang D, Yook S, Lee K (2014) Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications. Appl Energy 116:260–268CrossRefGoogle Scholar
  21. Jones N (2013) A escassez de alguns metais raros é um obstáculo para as tecnologias verdes. Yale Environ 360. http://e360yale.universia.net/a-escassez-de-alguns-metais-raros-e-um-obstaculo-para-as-tecnologias-verdes/?lang=pt-br. Accessed 7 Dec 2017
  22. Kiddee P, Naidu R, Wong MH (2013) Electronic waste management approaches: an overview. Waste Manag 33:1237–1250CrossRefGoogle Scholar
  23. Kitai A (2011) Principles of solar cells, LEDs and diodes. The role of the PN junction. Wiley, MississaugaCrossRefGoogle Scholar
  24. Maneesuwannarat S, Teamkao P, Vangnai AS, Yamashita M, Thiavetyan P (2016a) Possible mechanism of gallium bioleaching from gallium nitride (GAN) by Arthrobacter creatinolyticus: role of amino acids/peptides/proteins bindings with gallium. Process Saf Environ Prot 103:36–45CrossRefGoogle Scholar
  25. Maneesuwannarat S, Vangnai AS, Yamashita M, Thiavetyan P (2016b) Bioleaching of gallium from gallium arsenide by Cellulosimicrobium funkei and its application to semiconductor/electronic wastes. Process Saf Environ Prot 99:80–87CrossRefGoogle Scholar
  26. Martins TS, Isolani PC (2005) Terras raras: aplicações industriais e biológicas. Quim Nova 28(1):111–117CrossRefGoogle Scholar
  27. OSRAM (2009) Life cycle assessment of illuminants a comparison of light bulbs, compact fluorescent lamps and LED lamps, innovations management. Regensburg, Germany. http://www.energ-etica.eu/mediapool/99/993141/data/OSRAM_LED_LCA_Summary_November_2009.pdf. Accessed 24 July 2017
  28. Polanco SLC (2007) A situação da destinação pós-consumo de lâmpadas de mercúrio no Brasil. Dissertation, Escola de Engenharia Mauá do Centro Universitário do Instituto Mauá de Tecnologia, BrazilGoogle Scholar
  29. Reuter MA, Van Schaik A (2015) Product-centric simulation-based design for recycling: case of LED lamp recycling. J Sustain Metall 1:4–28CrossRefGoogle Scholar
  30. Scholand M J, Dillon HE (2012) Life-cycle assessment of energy and environmental impacts of LED lighting products. Part 2: LED manufacturing and performance. US Department of Energy. http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-21443.pdf. Accessed 17 June 2017
  31. Schubert EF (2006) Light-emitting diodes, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Serra AO (2011) Terras Raras – Brasil x China. J Braz Chem Soc 22(5):809CrossRefGoogle Scholar
  33. Serra OA, Lima JF, De Sousa Filho PC (2015) A Luz e as Terras Raras. Rev Virtual Quim 7(1):242–264CrossRefGoogle Scholar
  34. Stasiak F (2013) A Física dos LEDs. Revista da Set. n. 136. http://www.set.org.br/revista-da-set/a-fisica-dos-leds/. Accessed 27 May 2017
  35. Swain B, Mishra C, Kang L, Park K, Lee CG, Hong HS, Park J (2015a) Recycling of metal-organic chemical vapor deposition waste of GaN based power device and LED industry by acidic leaching: process optimization and kinetics study. J Power Sources 281:265–271CrossRefGoogle Scholar
  36. Swain B, Mishra C, Lee CG, Park K, Lee K (2015b) Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: a sustainable green process. Environ Res 140:704–713CrossRefGoogle Scholar
  37. Swain B, Mishra C, Kang L, Park K, Lee HHS (2015c) Recycling process for recovery of gallium from GaN na e-waste of LED industry through ball milling, annealing and leaching. Environ Res 138:401–408CrossRefGoogle Scholar
  38. Teixeira I, Rivera R, Reiff LO (2016) Iluminação LED: sai Edison, entram Haitz e Moore – benefícios e oportunidades para o país. BNDES Setorial, Rio de Janeiro 43:363–412. https://web.bndes.gov.br/bib/jspui/handle/1408/9576. Accessed 12 Aug 2017Google Scholar
  39. Viera EV, Lins FAF (1997) Concentração de minérios de terras-raras: uma revisão. CETEM/CNPq, Rio de JaneiroGoogle Scholar
  40. Yamachita A, Haddad J, Dias MVX (2006) Iluminação. In: Marques MCS, Haddad J, Martins ARS (eds) Conservação de energia Eficiência Energética de Equipamentos e Instalações, 3rd edn. FUPAI, Itabujá, pp 213–246Google Scholar
  41. Zhan L, Xia F, Ye Q, Xiang X, Xie B (2015) Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes. J Hazard Mater 299:388–394CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Emanuele Caroline Araújo dos Santos
    • 1
  • Tamires Augustin da Silveira
    • 1
  • Angéli Viviani Colling
    • 1
  • Carlos Alberto Mendes Moraes
    • 1
    Email author
  • Feliciane Andrade Brehm
    • 1
  1. 1.Universidade do Vale do Rio dos Sinos – UNISINOSPorto AlegreBrazil

Personalised recommendations