Advertisement

E-waste Management and the Conservation of Geochemical Scarce Resources

  • Tamires Augustin da Silveira
  • Emanuele Caroline Araújo dos Santos
  • Angéli Viviani Colling
  • Carlos Alberto Mendes MoraesEmail author
  • Feliciane Andrade Brehm
Chapter
  • 596 Downloads
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 33)

Abstract

Electrical and electronic equipment (EEE) generates very complex waste due to the wide variety of components such as metals, polymers, ceramic materials, and composite elements. In addition, the growing consumption of these devices due to technological development increases the rate they are disposed of. When improperly disposed of, waste electric and electronic equipment (WEEE) may trigger environmental impacts and negative effects on health. Also, the expansion of the electronic industry is based on the extraction of natural resources, some of which are running increasingly scarce. In this scenario, recycling stands as an alternative in the effort to recover economically interesting materials such as metals, which are abundant in waste electric and electronic equipment. This text discusses the current scenario in the electrical and electronic equipment industry and generation of waste electric and electronic equipment considering the implications of resource management and environment, social, and economic impact in this production chain.

Keywords

E-waste Scarce resource Economic, environmental, and social issues Recycle process Urban mining Elements recovery Reclamation Rare earth elements Critical metals Hitchhike metal/element 

References

  1. ABDI – Agência Brasileira de Desenvolvimento Industrial (2013) Logística Reversa de Equipamentos Eletroeletrônicos – Análise de Viabilidade Técnica e Econômica. http://www.abdi.com.br/Estudo/Logistica%20reversa%20de%20residuos_pdf. Accessed 12 July 2017
  2. ABINEE – Associação Brasileira da Indústria Elétrica e Eletrônica (2009) A Indústria Elétrica e Eletrônica em 2020. http://www.abinee.org.br/programas/imagens/2020a.pdf. Accessed 19 June 2018Google Scholar
  3. Araújo MG (2013) Modelo de avaliação do ciclo de vida para a gestão de resíduos de equipamentos eletroeletrônicos no Brasil. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilGoogle Scholar
  4. Arndt NT, Fontboté L, Hedenquist JW, Kesler SE, Thompson JFH, Wood DG (2017) Future Global Mineral Resources. http://www.geochemicalperspectives.org/wp-content/uploads/2017/05/v6n11.pdf. Accessed 25 Jan 2018Google Scholar
  5. Arora R, Paterok K, Banerjee A, Saluja MS (2017) Potential and relevance of urban mining in the context of sustainable cities. IIMB Manag Rev 29:210–224CrossRefGoogle Scholar
  6. Ayres RU, Peiró LT (2013) Material efficiency: rare and critical metals. Phil Trans R Soc A 371:20110563CrossRefGoogle Scholar
  7. Baccini P, Brunner P (2012) Metabolism of the anthroposphere: analysis evaluation design, 2nd edn. MIT Press, Cambridge, MA. ISBN 978-0-262-01665-0CrossRefGoogle Scholar
  8. Blazsó M, Czégény ZS, Csoma CS (2002) Pyrolysis and debromination of flame retarded polymers of electronic scrap studied by analytical pyrolysis. J Anal Appl Pyrolysis 64:249–261CrossRefGoogle Scholar
  9. Brandl H (2001) Microbial leaching of metals. In: Microbial diversity in bioleaching environments, chapter 8. Zurich, pp 192–217Google Scholar
  10. BRASIL. Lei nº 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos (PNRS), altera a Lei no 9.605, de 12 de fevereiro de 1998; e dá outras providências. Disponível em:. Acesso em 19 mar. de 2019.Google Scholar
  11. Britannica Academic Encyclopædia Britannica (2016) Electronic Waste. https://www.britannica.com/technology/electronic-waste. http://www.epa.ie/enforcement/weee/electricalandelectronicequipment/. Accessed 25 Jan 2018
  12. CETEM – MCT. Centro de Tecnologia Mineral. Ministério da Ciência e Tecnologia (2004) Tratamento de Minérios. 4a edição. Rio de Janeiro.Google Scholar
  13. CETEM – Centro de Tecnologia Mineral (2015) Extração de ouro a partir de placas de circuito impresso por cianetação intensiva. Série Tecnologia Ambiental – ISSN 2015:0103–7374Google Scholar
  14. Cobbing M (2008) Toxic tech: not in our backyard. Uncovering the Hidden Flows of e-waste. https://www.greenpeace.org/norway/Global/norway/p2/other/report/2008/toxic-tech-not-in-our-backyar.pdf. Accessed 19 June 2018Google Scholar
  15. Cossu R, Williams ID (2015) Urban mining: concepts terminology challenges. Waste Manag 45:1–3CrossRefGoogle Scholar
  16. Cucchiella F, D’Adamo I, Koh SCL, Rosa P (2015) Recycling of WEEEs: an economic assessment of present and future e-waste streams. Renew Sust Energy Rev 51:263–272CrossRefGoogle Scholar
  17. Cui J, Forssberg E (2003) Mechanical recycling of waste electric and electronic equipment: a review. J Hazard Mater B99:243–263CrossRefGoogle Scholar
  18. da Silveira TA, Dorneles KO, Moraes CAM, Brehm FA (2016) Caracterização de placas de circuito impresso de smartphones orientada para reciclagem. Paper presented at the fifth innovation and technology seminar IFSul, 8–10 November 2016, ISSN 2446-7618Google Scholar
  19. de Moraes VT (2011) Recuperação de metais a partir de processamento mecânico e hidrometalúrgico de placas de circuito impresso de celulares obsoletos. Thesis, USP, São Paulo, BrazilGoogle Scholar
  20. Di Maria F, Micale C, Sordi A, Cirulli G, Marionni M (2013) Urban mining: quality and quantity of recyclable and recoverable material mechanically and physically extractable from residual waste. Waste Manag 33(12):2594–2599CrossRefGoogle Scholar
  21. Environmental Protection Agency (EPA) Electrical and electronic equipment. http://www.epa.ie/enforcement/weee/electricalandelectronicequipment/. Accessed 6 Feb 2018
  22. EPA (United States Environmental Protection Agency) https://searchepagov/epasearch/epasearch?querytext=recycle+&typeofsearch=epa&doctype=all&originalquerytext=recycle+concept&areaname=&faq=true&site=epa_default&filter=&fld=&sessionid=9D9809E31912F3508726BA7629E6E5D2&prevtype=epa&result_template=2colftl&stylesheet=. Accessed 7 Feb 2018Google Scholar
  23. European Commission (2010) Critical raw materials for EU Report of the Ad-hoc Working Group on Defining Critical Raw Materials. https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en/system/files/ged/79%20report-b_en.pdf. Accessed 29 Jan 2018
  24. European Commission 2014 Report on the critical raw materials for EU Report of the Ad-hoc Working Group on Defining Critical Raw Materials. https://ec.europa.eu/docsroom/documents/10010/attachments/1/translations/en/renditions/pdf. Accessed 29 Jan 2018
  25. Garcia JRO (1989) Estudos da Biolixiviação de Minérios de Urânio por Thiobacillus ferrooxidans. Thesis, Instituto de Biologia Campinas, UNICAMP, São Paulo, BrazilGoogle Scholar
  26. Garcia JRO, Urenha LC (2001) Lixiviação Bacteriana de Minérios. In: Lima UA, Aquarone E, Borzani W, Schmidel WS (eds) Biotecnologia Industrial-Processos Fermentativos Industriais, 1ed. Edgard Blücher Editora, São Paulo, pp 485–512Google Scholar
  27. Garlapati VK (2016) E-waste in India and developed countries: management recycling business and biotechnological initiatives. Renew Sust Energy Rev 54:874–881CrossRefGoogle Scholar
  28. Gerbase A, Oliveira C (2012) Reciclagem do lixo de informática: Uma nova oportunidade para a Química. Quim Nova 35(7):1486–1492CrossRefGoogle Scholar
  29. Ghosh B, Ghosh MK, Parhi P, Mukherjee PS, Mishra BK (2015) Waste printed circuit boards recycling: an extensive assessment status. J Clean Prod 94:5–19Google Scholar
  30. Gouveia AR (2014) Recuperação de metais de placas de circuito impresso por via hidrometalúrgica. Dissertation. Universidade do Porto, Lisboa, PortugalGoogle Scholar
  31. GSMA – GSM Association (2015) eWaste in Latin America: Statistical analysis and policy recommendations. https://www.gsma.com/publicpolicy/ewaste-latin-america-statistical-analysis-policy-recommendations/gsma2015_report_ewasteinlatinamerica_english-2. Accessed 19 June 2018Google Scholar
  32. Hayes PC (1993) Process principles in minerals and materials production. Hayes Publishing CO, Brisbane, p. 29Google Scholar
  33. Henckens MLCM, Van Ierland EC, Driessen PPJ, Worrell E (2016) Mineral resources: geological scarcity, market price trends, and future generations. Resour Policy 49:102–111CrossRefGoogle Scholar
  34. Jaiswal A, Samuel C, Patel BS, Kumar M (2015) Go green with WEEE: eco-friendly approach for handling e-waste. Proc Comp Sci 46:1317–1324CrossRefGoogle Scholar
  35. Jo HJ, Kang HY, Lee IS, Jun YS (2017) Estimation of potential quantity and value of used and in-use stocks or urban mines in Korea. J Mater Cycles Waste Manag.  https://doi.org/10.1007/s10163-017-0655-8. Accessed 12 July 2017CrossRefGoogle Scholar
  36. Kasper AC (2011) Caracterização e Reciclagem de Materiais Presentes em Sucatas de Telefones Celulares. Dissertation, Universidade Federal do Rio Grande do Sul, Porto Alegre, BrazilGoogle Scholar
  37. Knoth R, Brandstotter M, Kopacek B, Kopacek P (2000) Automated disassembly of electr(on)ic equipment. Conference Record 2002 IEEE International Symposium on Electronics and the EnvironmentGoogle Scholar
  38. Krook J, Baas L (2013) Getting serious about mining the technosphere: a review of recent landfill mining and urban mining research. J Clean Prod 55:1–9CrossRefGoogle Scholar
  39. LEAF – Leaching Environmental Assessment Framework/Vanderbilt University Leaching Process. http://www.cresp.org/cresp-projects/waste-processing-special-nuclear-materials/leaf-leaching-environmental-assessment-framework/. Accessed 12 July 2017Google Scholar
  40. Lederer J, Laner D, Fellner J, Recheberger H (2014) A framework for the evaluation of anthropogenic resources based on natural resource evaluation concepts. Paper presented at the SUM 2014, 2nd Symposium on Urban Mining, IWWG – International Waste Working Group, Bergamo, Italy. 16–21 May, 2014Google Scholar
  41. Loureiro LFE (2013) O Brasil e a reglobalização da indústria das terras raras. CETEM/MCTI, Rio de JaneiroGoogle Scholar
  42. Lundgreen K (2012) The global impact of e-waste: addressing the challenge. International Labour Office Programme on Safety and Health at Work and the Environment (SafeWork) Sectoral Activities Department (SECTOR). ILO, GenevaGoogle Scholar
  43. Nicolai FNP (2016) Mineração urbana: avaliação da economicidade da recuperação de componentes ricos em Au a partir de resíduo eletrônico (e-waste). Thesis, Universidade Federal de Ouro Preto, Minas Gerais, BrazilGoogle Scholar
  44. OLIVEIRA, P.C.F. Valorização de Placas de Circuito Impresso por Hidrometalurgia. Lisboa, 320 p., 2012. Tese (doutorado) – Universidade Técnica de Lisboa.Google Scholar
  45. Palmiere R, Bonifazi G, Serranti S (2014) Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging. Waste Manag 34:2120–2130CrossRefGoogle Scholar
  46. Parajuly K, Habib K, Liu G (2017) Waste electrical and electronic equipment (WEEE) in Denmark: flows, quantities and management. Resour Conserv Recycl 123:85–92CrossRefGoogle Scholar
  47. Rare Element Resources (2016) Rare Earth Elements. Littleton. Acessed 10 Mar 2019Google Scholar
  48. Ribeiro PPM (2013) Concentração de metais contidos em placas de circuito impresso de computadores descartados. Projeto de graduação. Universidade Federal do Rio de Janeiro, Rio de Janeiro, 66 pGoogle Scholar
  49. Richter D (2009) Uma rota de recuperação de metal a partir de escória secundária da produção de ferroníquel. Dissertação de Mestrado. USP, São Paulo,Google Scholar
  50. Santanilla AJM (2012) Recuperação de Níquel a partir do Licor de Lixiviação de Placas de Circuito Impresso de Telefones Celulares. Dissertação (mestrado). São Paulo – USPGoogle Scholar
  51. Sarath P, Bonda S, Mohanty S, Nayak SK (2015) Mobile phone waste management and recycling view and trends. Waste Manag 46:536–545CrossRefGoogle Scholar
  52. Sena FR (2012) Evolução da tecnologia móvel celular e o impacto nos resíduos eletroeletrônicos. Dissertation, PUC, Rio de Janeiro, BrazilGoogle Scholar
  53. Shagun A, Kush A, Arora A (2013) Proposed solution of e-waste management. Int J Fut Comp Commun 2(5):490–493pGoogle Scholar
  54. Silvas PCS (2014) Utilização de hidrometalurgia e biohidrometalurgia para reciclagem de placas de circuito impresso. Thesis, Universidade de São Paulo, São Paulo, BrazilGoogle Scholar
  55. Song Q, Li J (2014) Environmental effects of heavy metals derived from the e-waste recycling activities in China: a systematic review. Waste Manag 34:2587–2594CrossRefGoogle Scholar
  56. Statista, The Statistics Portal (2017) Countries with the largest smelter production of aluminum from 2010 to 2017 (in 1000 metric tons). https://www.statista.com/statistics/264624/global-production-of-aluminum-by-country/. Accessed 13 Feb 2018
  57. STEP – Solving the E-Waste Problem – Green Paper (2015) E-waste prevention take-back system design and policy approaches, ISSN: 2219-6579 (online)Google Scholar
  58. Tansel B (2017) From electronic consumer products to e-waste: global outlook waste quantities recycling challenges. Environ Int 98:35–45CrossRefGoogle Scholar
  59. Tesfaye F, Lindberg D, Hamuyuni J, Taskine P, Hupa L (2017) Improving urban mining practices for optimal recovery of resources from e-waste. Min Eng 111:209–221CrossRefGoogle Scholar
  60. Tunsu C, Petranikova M, Gergoric M, Ekberg C, Retegan T (2015) Reclaiming rare earth elements from end-of-life products: a review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 156:239–258CrossRefGoogle Scholar
  61. Umicore (2016) UMICORE BRASIL LTDA. Processamento de sucata eletrônica. V Seminário Internacional Sobre Resíduos de Equipamentos Eletroeletrônicos – 18 e 19 de agosto de 2016, Recife, Pernambuco, BrasilGoogle Scholar
  62. UNEP – United Nations Environment (2015) Waste crime – waste risks: gaps in meeting the global waste challenge http://web.unep.org/ourplanet/september-2015/unep-publications/waste-crime-waste-risks-gaps-meeting-global-waste-challenge-rapid. Accessed 6 Feb 2018
  63. UNEP. – United Nations Environment Programme (2009) Recycling – from e-waste to resources. http://www.unep.fr/shared/publications/pdf/DTIx1192xPA-Recycling%20from%20ewaste%20to%20Resources.pdf. Accessed 19 June 2018Google Scholar
  64. União Europeia (2012) Directive 2012/19/UE of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). Off J L 197:38–71. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:197:0038:0071:en:PDF. Accessed 5 Feb 2018
  65. USGS – (United States Geological Survey) (2016) Iron and steel production. https://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel/mcs-2016-feste.pdf. Accessed 13 Feb 2018
  66. Veit HM (2001) Emprego de Processamento Mecânico na Reciclagem de Sucatas de Placas de Circuito Impresso. Dissertation, UFRGS, Porto Alegre, BrazilGoogle Scholar
  67. Veit HM (2005) Reciclagem de Cobre de Sucatas de Placas de Circuito Impresso. Thesis, UFRGS, Porto Alegre, BrazilGoogle Scholar
  68. Ventura EACC (2014) Estudos de processos físicos para recuperação de metais de placas de circuito impresso. Dissertation, Universidade do Porto, Porto, PortugalGoogle Scholar
  69. Vivas R de C, Costa FP (2013) Tomada de decisão na escolha do processo de reciclagem e recuperação de metais das placas eletrônicas através de análise hierárquica. IV Congresso Brasileiro de Gestão Ambiental. Salvador/BA.Google Scholar
  70. Wen Z, Zhang C, Ji X, Xue Y (2015) Urban Mining’s potential to relieve China’s coming resource crisis. J Ind Ecol 10(6):1091–1102CrossRefGoogle Scholar
  71. World Steel Association (1978) Handbook of world steel statistics 1978. https://webarchiveorg/web/20150513202042/ https://www.worldsteel.org/en/dam/jcr:09ed87af-366e-44c6-9f55-63c09f76b520/A%2520handbook%2520of%2520world%2520steel%2520statistics%25201978.pdf. Accessed 13 Feb 2018
  72. World Steel Association (2010) Steel statistical yearbook. https://www.worldsteel.org/en/dam/jcr:1ef195b3-1a46-41c2-b88b-6072c2687850/Steel+statistical+yearbook+2010.pdf. Accessed 13 Feb 2018
  73. World Steel Association (2013) Steel statistical yearbook. https://www.worldsteel.org/en/dam/jcr:7bb9ac20-009d-4c42-96b6-87e2904a721c/Steel Statistical-Yearbook-2013.pdf. Accessed 13 Feb 2018
  74. Yu J, Welford R, Hills P (2006) Industry responses to EU WEEE and ROHS directives: perspectives from China. Corp Soc Respons Environ Manag 13:286–299CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tamires Augustin da Silveira
    • 1
  • Emanuele Caroline Araújo dos Santos
    • 1
  • Angéli Viviani Colling
    • 1
  • Carlos Alberto Mendes Moraes
    • 1
    Email author
  • Feliciane Andrade Brehm
    • 1
  1. 1.Universidade do Vale do Rio dos Sinos – UNISINOSPorto AlegreBrazil

Personalised recommendations