Skip to main content

Hierarchical Block Matrix Approach for Multi-view Clustering

  • Conference paper
  • First Online:
  • 482 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10834))

Abstract

Scientists are facing two important challenges when investigating life processes. First, biological systems, from gene regulation to physiological mechanisms, are inherently multiscale. Second, complex disease data collection is an expensive process, and yet the analyses are presented in a rather empirical and sometimes simplistic way, completely missing the opportunity of uncovering patterns of predictive relationships and meaningful profiles. In this work, we propose a multi-view clustering methodology that, although quite general, could be used to identify patient subgroups, for different omic information, by studying the hierarchical structures of the patient data in each view and merging their topologies. We first demonstrate the ability of our method to identify hierarchical structures in synthetic data sets and then apply it to real multi-view multi-omic data sets. Our results, although preliminary, suggest that this methodology outperforms single-view clustering approaches and could open several directions for improvements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  2. Cai, X., Nie, F., Huang, H.: Multi-view k-means clustering on big data. In: IJCAI, pp. 2598–2604 (2013)

    Google Scholar 

  3. Carmel, L., Harel, D., Koren, Y.: Drawing directed graphs using one-dimensional optimization. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 193–206. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36151-0_19

    Chapter  MATH  Google Scholar 

  4. Carroll, J.S., et al.: Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. 38(11), 1289 (2006)

    Article  Google Scholar 

  5. Castro, M.A., Wang, X., Fletcher, M.N., Meyer, K.B., Markowetz, F.: Reder: R/bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations. Genome Biol. 13(4), R29 (2012)

    Article  Google Scholar 

  6. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering via canonical correlation analysis. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 129–136. ACM (2009)

    Google Scholar 

  7. Ciriello, G., Miller, M.L., Aksoy, B.A., Senbabaoglu, Y., Schultz, N., Sander, C.: Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45(10), 1127–1133 (2013)

    Article  Google Scholar 

  8. Greene, D., Cunningham, P.: A matrix factorization approach for integrating multiple data views. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5781, pp. 423–438. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04180-8_45

    Chapter  Google Scholar 

  9. Grigorov, M.G.: Global properties of biological networks. Drug Discov. Today 10(5), 365–372 (2005)

    Article  Google Scholar 

  10. Herlau, T., Mørup, M., Schmidt, M.N., Hansen, L.K.: Detecting hierarchical structure in networks. In: 2012 3rd International Workshop on Cognitive Information Processing (CIP), pp. 1–6. IEEE (2012)

    Google Scholar 

  11. Kandoth, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333–339 (2013)

    Article  Google Scholar 

  12. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 252–260. SIAM (2013)

    Google Scholar 

  13. Mones, E., Vicsek, L., Vicsek, T.: Hierarchy measure for complex networks. PloS one 7(3), e33799 (2012)

    Article  Google Scholar 

  14. Petz, D.: Entropy, von Neumann and the von Neumann entropy. In: Rédei, M., Stöltzner, M. (eds.) John von Neumann and the Foundations of Quantum Physics. VCIY, vol. 8, pp. 83–96. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-017-2012-0_7

    Chapter  Google Scholar 

  15. Ruan, J., Dean, A.K., Zhang, W.: A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst. Biol. 4(1), 8 (2010)

    Article  Google Scholar 

  16. Serra, A., Fratello, M., Fortino, V., Raiconi, G., Tagliaferri, R., Greco, D.: MVDA: a multi-view genomic data integration methodology. BMC Bioinform. 16(1), 1 (2015)

    Article  Google Scholar 

  17. Serra, A., Fratello, M., Greco, D., Tagliaferri, R.: Data integration in genomics and systems biology. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1272–1279. IEEE (2016)

    Google Scholar 

  18. Shavit, Y., Walker, B.J., et al.: Hierarchical block matrices as efficient representations of chromosome topologies and their application for 3C data integration. Bioinformatics 32(8), 1121–1129 (2016)

    Article  Google Scholar 

  19. Taskesen, E., et al.: Pan-cancer subtyping in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics. Sci. Rep. 6, 24949 (2016)

    Article  Google Scholar 

  20. Trusina, A., Maslov, S., Minnhagen, P., Sneppen, K.: Hierarchy measures in complex networks. Phys. Rev. Lett. 92(17), 178702 (2004)

    Article  Google Scholar 

  21. Verhaak, R.G., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010)

    Article  Google Scholar 

  22. Wang, B., et al.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11(3), 333–337 (2014)

    Article  Google Scholar 

  23. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  24. West, M., et al.: Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. 98(20), 11462–11467 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serra, A., Guida, M.D., Lió, P., Tagliaferri, R. (2019). Hierarchical Block Matrix Approach for Multi-view Clustering. In: Bartoletti, M., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2017. Lecture Notes in Computer Science(), vol 10834. Springer, Cham. https://doi.org/10.1007/978-3-030-14160-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14160-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14159-2

  • Online ISBN: 978-3-030-14160-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics