Skip to main content

Experimental Evidences Suggest High Between-Vesicle Diversity of Artificial Vesicle Populations: Results, Models and Implications

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2017)

Abstract

In the past years, artificial cellular models for origins-of-life research and synthetic biology have been extensively studied. At this aim, solute-filled lipid vesicles (liposomes) are widely used. Several evidences have been collected about the capture of water-soluble chemicals, the mechanism of vesicle self-reproduction, and the course of (bio)chemical reactions in the vesicle lumen. Among the several fascinating questions which emerged from these studies, here we focus on a peculiar feature, namely, the fact that a spontaneous heterogeneity of vesicle structure often emerges. In other words, vesicle populations created in the laboratory by classical batch methods include very ‘diverse’ vesicles with respect to size, morphology, and – importantly – solute content. The consequences of this between-vesicle diversity are shortly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ideally, one would like to have a single lipid monolayer deposited over a large surface so that all parts of the film would experience the same conditions. This corresponds, in most cases, to work well below the \(\mu \)M lipid concentration range, with consequent vesicle losses and other impractical complications. Thus, in the most common experimental conditions the film is rarely so perfect and different regions of the film will experience different micro-environments. Actually, realistic laboratory conditions might affect the measured heterogeneity of vesicle formation paths.

  2. 2.

    Note that this loss does not refer to the volume loss which follows from the vesicle size reduction, but it is an authentic concentration reduction due to the reduction of the average number per unit of volume.

References

  1. Altamura, E., Carrara, P., D’Angelo, F., Mavelli, F., Stano, P.: Extrinsic stochastic factors (solute partition) in gene expression inside lipid vesicles and lipid-stabilized water-in-oil droplets. Synth. Biol. (OUP) p. (2018, in press)

    Google Scholar 

  2. Bangham, A.D., Horne, R.W.: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 8, 660–668 (1964)

    Article  Google Scholar 

  3. Calviello, L., Stano, P., Mavelli, F., Luisi, P.L., Marangoni, R.: Quasi-cellular systems: stochastic simulation analysis at nanoscale range. BMC Bioinf. 14, S7 (2013). https://doi.org/10.1186/1471-2105-14-S7-S7

    Article  Google Scholar 

  4. Carrara, P., Stano, P., Luisi, P.L.: Giant vesicles “colonies”: a model for primitive cell communities. Chembiochem Eur. J. Chem. Biol. 13(10), 1497–1502 (2012). https://doi.org/10.1002/cbic.201200133

    Article  Google Scholar 

  5. D’Aguanno, E., Altamura, E., Mavelli, F., Fahr, A., Stano, P., Luisi, P.L.: Physical routes to primitive cells: an experimental model based on the spontaneous entrapment of enzymes inside micrometer-sized liposomes. Life (Basel, Switzerland) 5(1), 969–996 (2015). https://doi.org/10.3390/life5010969

    Article  Google Scholar 

  6. Damiano, L., Canamero, L.: The frontier of synthetic knowledge: toward a constructivist science. World Futures 68(3), 171–177 (2012). https://doi.org/10.1080/02604027.2012.668409

    Article  Google Scholar 

  7. Elani, Y.: Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology. Biochem. Soc. Trans. 44(3), 723–730 (2016). https://doi.org/10.1042/BST20160052

    Article  Google Scholar 

  8. Exterkate, M., Caforio, A., Stuart, M.C.A., Driessen, A.J.M.: Growing membranes in vitro by continuous phospholipid biosynthesis from free fatty acids. ACS Synth. Biol. 7(1), 153–165 (2018). https://doi.org/10.1021/acssynbio.7b00265

    Article  Google Scholar 

  9. Fanti, A., Gammuto, L., Mavelli, F., Stano, P., Marangoni, R.: Do protocells preferentially retain macromolecular solutes upon division/fragmentation? A study based on the extrusion of POPC giant vesicles. Integr. Biol. (Camb) 10(1), 6–17 (2018). https://doi.org/10.1039/c7ib00138j

    Article  Google Scholar 

  10. Fox, S.V.: Self-assembly of the protocell from a self-ordered polymer. J. Sci. Ind. Res. 27, 267–274 (1968)

    Google Scholar 

  11. Gebicki, J.M., Hicks, M.: Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 243(5404), 232–234 (1973)

    Article  Google Scholar 

  12. Hadorn, M., Boenzli, E., Sørensen, K.T., De Lucrezia, D., Hanczyc, M.M., Yomo, T.: Defined DNA-mediated assemblies of gene-expressing giant unilamellar vesicles. Langmuir 29(49), 15309–15319 (2013). https://doi.org/10.1021/la402621r

    Article  Google Scholar 

  13. Hanczyc, M.M.: The early history of protocells - the search for the recipe of life. In: Rasmussen, S., et al. (eds.) Protocells Bridging Nonliving and Living Matter. MIT Press, Cambridge (2009)

    Google Scholar 

  14. Hanczyc, M.M., Fujikawa, S.M., Szostak, J.W.: Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302(5645), 618–622 (2003). https://doi.org/10.1126/science.1089904

    Article  Google Scholar 

  15. Hargreaves, W.R., Deamer, D.W.: Liposomes from ionic, single-chain amphiphiles. Biochemistry 17(18), 3759–3768 (1978)

    Article  Google Scholar 

  16. Hosoda, K., Sunami, T., Kazuta, Y., Matsuura, T., Suzuki, H., Yomo, T.: Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction. Langmuir 24(23), 13540–13548 (2008). https://doi.org/10.1021/la802432f

    Article  Google Scholar 

  17. Kaneko, K.: Life: An Introduction to Complex Systems Biology. UCS. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-32667-0

    Book  MATH  Google Scholar 

  18. Kita, H., et al.: Replication of genetic information with self-encoded replicase in liposomes. ChemBioChem. 9(15), 2403–2410 (2008). https://doi.org/10.1002/cbic.200800360

    Article  Google Scholar 

  19. Kuruma, Y., Stano, P., Ueda, T., Luisi, P.L.: A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim. Biophys. Acta 1788(2), 567–574 (2009). https://doi.org/10.1016/j.bbamem.2008.10.017

    Article  Google Scholar 

  20. Lazzerini-Ospri, L., Stano, P., Luisi, P., Marangoni, R.: Characterization of the emergent properties of a synthetic quasi-cellular system. BMC Bioinform. 13(Suppl 4), S9 (2012). https://doi.org/10.1186/1471-2105-13-S4-S9

    Article  Google Scholar 

  21. Luisi, P.L.: Autopoiesis: a review and a reappraisal. Naturwissenschaften 90(2), 49–59 (2003). https://doi.org/10.1007/s00114-002-0389-9

    Article  Google Scholar 

  22. Luisi, P.L., Allegretti, M., Pereira de Souza, T., Steiniger, F., Fahr, A., Stano, P.: Spontaneous protein crowding in liposomes: a new vista for the origin of cellular metabolism. ChemBioChem 11(14), 1989–1992 (2010). https://doi.org/10.1002/cbic.201000381

    Article  Google Scholar 

  23. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living. D. Reidel Publishing Company, 1st edn. (1980)

    Google Scholar 

  24. Mavelli, F.: Stochastic simulations of minimal cells: the Ribocell model. BMC Bioinform. 13(Suppl 4), S10 (2012). https://doi.org/10.1186/1471-2105-13-S4-S10

    Article  Google Scholar 

  25. Mavelli, F., Stano, P.: Experiments on and numerical modeling of the capture and concentration of transcription-translation machinery inside vesicles. Artif. Life 21(4), 445–463 (2015)

    Article  Google Scholar 

  26. Nakano, T., Eckford, A.W., Haraguchi, T.: Molecular Communications. Cambridge University Press, Cambridge UK (2013)

    Book  Google Scholar 

  27. Oparin, A.I.: The pathways of the primary development of metabolism and artificial modeling of this development in coacervate drops. In: The Origins of Prebiological Systems and of their Molecular Matrices, pp. 331–345. S. W. Fox, New York, Academic Press edn. (1965)

    Chapter  Google Scholar 

  28. Paradisi, P., Allegrini, P., Chiarugi, D.: A renewal model for the emergence of anomalous solute crowding in liposomes. BMC Syst. Biol. 9(Suppl 3), S7 (2015). https://doi.org/10.1186/1752-0509-9-S3-S7

    Article  Google Scholar 

  29. Rampioni, G., et al.: Synthetic cells produce a quorum sensing chemical signal perceived by Pseudomonas aeruginosa. Chem. Commun. 54, 2090–2093 (2018). https://doi.org/10.1039/C7CC09678J

    Article  Google Scholar 

  30. Schmidli, P., Schurtenberger, P., Luisi, P.: Liposome-mediated enzymatic-synthesis of phosphatidylcholine as an approach to self-replicating liposomes. J. Am. Chem. Soc. 113(21), 8127–8130 (1991). https://doi.org/10.1021/ja00021a043

    Article  Google Scholar 

  31. Pereira de Souza, T., Stano, P., Luisi, P.L.: The minimal size of liposome-based model cells brings about a remarkably enhanced entrapment and protein synthesis. Chembiochem 10(6), 1056–1063 (2009). https://doi.org/10.1002/cbic.200800810

    Article  Google Scholar 

  32. de Souza, T.P., Fahr, A., Luisi, P.L., Stano, P.: Spontaneous encapsulation and concentration of biological macromolecules in liposomes: an intriguing phenomenon and its relevance in origins of life. J. Mol. Evol. 79(5–6), 179–192 (2014). https://doi.org/10.1007/s00239-014-9655-7

    Article  Google Scholar 

  33. Souza, T.P.D., et al.: Vesicle aggregates as a model for primitive cellular assemblies. Phys. Chem. Chem. Phys. 19(30), 20082–20092 (2017). https://doi.org/10.1039/C7CP03751A

    Article  Google Scholar 

  34. Stano, P., Wehrli, E., Luisi, P.L.: Insights into the self-reproduction of oleate vesicles. J. Phys. Condens. Matter 18(33), S2231 (2006). https://doi.org/10.1088/0953-8984/18/33/S37

    Article  Google Scholar 

  35. Stano, P., Carrara, P., Kuruma, Y., de Souza, T.P., Luisi, P.L.: Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. J. Mater. Chem. 21(47), 18887–18902 (2011). https://doi.org/10.1039/c1jm12298c

    Article  Google Scholar 

  36. Stano, P., D’Aguanno, E., Bolz, J., Fahr, A., Luisi, P.L.: A remarkable self-organization process as the origin of primitive functional cells. Angew. Chemie-Int. Ed. 52(50), 13397–13400 (2013). https://doi.org/10.1002/anie.201306613

    Article  Google Scholar 

  37. Stano, P., Luisi, P.: Theory and construction of semi-synthetic minimal cells. In: Nesbeth, D.N. (ed.) Synthetic Biology Handbook, pp. 209–258. CRC Press, London (2016)

    Chapter  Google Scholar 

  38. Stano, P., Mavelli, F.: Protocells models in origin of life and synthetic biology. Life 5(4), 1700–1702 (2015). https://doi.org/10.3390/life5041700

    Article  Google Scholar 

  39. Stano, P., et al.: Recent biophysical issues about the preparation of solute-filled lipid vesicles. Mech. Adv. Mater. Struct. 22(9), 748–759 (2015). https://doi.org/10.1080/15376494.2013.857743

    Article  Google Scholar 

  40. van Swaay, D., deMello, A.: Microfluidic methods for forming liposomes. Lab. Chip. 13(5), 752–767 (2013). https://doi.org/10.1039/c2lc41121k

    Article  Google Scholar 

  41. Walde, P., Wick, R., Fresta, M., Mangone, A., Luisi, P.: Autopoietic self-reproduction of fatty-acid vesicles. J. Am. Chem. Soc. 116(26), 11649–11654 (1994). https://doi.org/10.1039/c2lc41121k

    Article  Google Scholar 

  42. Weiss, M., et al.: Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater. 17(1), 89–96 (2018). https://doi.org/10.1038/nmat5005

    Article  MathSciNet  Google Scholar 

  43. Zepik, H.H., Blochliger, E., Luisi, P.L.: A chemical model of homeostasis. Angew. Chem.-Int. Edit. 40(1), 199–202 (2001)

    Article  Google Scholar 

  44. Zhu, T.F., Szostak, J.W.: Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131(15), 5705–5713 (2009). https://doi.org/10.1021/ja900919c

    Article  Google Scholar 

Download references

Acknowledgments

Collaboration among the authors has been fostered by the European COST Action CM1304 Emergence and Evolution of Complex Chemical Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Stano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stano, P., Marangoni, R., Mavelli, F. (2019). Experimental Evidences Suggest High Between-Vesicle Diversity of Artificial Vesicle Populations: Results, Models and Implications. In: Bartoletti, M., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2017. Lecture Notes in Computer Science(), vol 10834. Springer, Cham. https://doi.org/10.1007/978-3-030-14160-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14160-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14159-2

  • Online ISBN: 978-3-030-14160-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics