Benchmarking Human Likeness of Bipedal Robot Locomotion: State of the Art and Future Trends

  • Diego TorricelliEmail author
  • Rahman S. M. Mizanoor
  • Vittorio Lippi
  • Maarten Weckx
  • Glenn Mathijssen
  • Bram Vanderborght
  • Thomas Mergner
  • Dirk Lefeber
  • Jose L. Pons
Part of the Cognitive Systems Monographs book series (COSMOS, volume 36)


The difficulty of defining standard benchmarks for human likeness is a well-know problem in bipedal robotics. This chapter reviews methods and criteria for the assessment of the sensorimotor mechanisms involved in human walking and posture. We focused on the potential of the reviewed methods to be used as benchmarks for human-like locomotion of bipedal robots. For walking conditions, several criteria and methods related to dynamic similarity, passivity and dynamicity, static stability, and energy consumption have been identified. As for standing functions, we identified the most relevant features characterizing the human postural sensorimotor mechanisms, and presented the experimental protocols currently used to evaluate the human-like robotic performance. Furthermore, we discussed how the current robotic competitions such as RoboCup and DARPA Robotics Challenges can contribute to the identification of relevant benchmarks. Finally, we speculated about the importance of international consensus on the quantitative definition of human likeness, and suggested some future actions for improving collaboration and standardization within the scientific community.


Benchmarking Human likeness Bipedal robot Humanoid Locomotion Standing 



This research activity has been founded by the European Seventh Framework Programme FP7-ICT-2011-9, under the grant agreement no 60069 - H2R “Integrative Approach for the Emergence of Human-like Robot Locomotion”.


  1. 1.
    Behnke, S.: Robot competitions-ideal benchmarks for robotics research. In: Proceedings of Workshop II on Benchmarks in Robotics Research, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9–15 October 2006Google Scholar
  2. 2.
    del Pôbil, A.: Why do we need benchmarks in robotics research? In: Proceedings of Workshop II on Benchmarks in Robotics Research, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9–15 October 2006Google Scholar
  3. 3.
    Rahman, S.: Evaluating and benchmarking the interactions between a humanoid robot and a virtual human for a real-world social task. Communications in Computer and Information Science, vol. 409, pp. 184–197. Springer, Berlin (2013)Google Scholar
  4. 4.
    Benchmarking intelligent (multi-)robot systems.
  5. 5.
    Library of computational benchmark problems.
  6. 6.
    Replicable robotics research, benchmarking and result exploitation: where we are.
  7. 7.
    Evaluating AAL systems through competitive benchmarking.
  8. 8.
    H2R integrative approach for the emergence of human-like robot locomotion, FP7-ICT-2011-9, grant agreement no 60069.
  9. 9.
    Vaughan, C., O’Malley, M.: Froude and the contribution of naval architecture to our understanding of bipedal locomotion. Gait & Posture 21(3), 350–362 (2005)CrossRefGoogle Scholar
  10. 10.
    Alexander, R.M.: Exploring Biomechanics: Animals in Motion. W.H. Freeman, New York (1992)Google Scholar
  11. 11.
    Alexander, R.M., Jayes, A.S.: A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J. Zool. 201(1), 135–152 (1983)CrossRefGoogle Scholar
  12. 12.
    Alexander, R.M.: The gaits of bipedal and quadrupedal animals. Int. J. Robot. Res. 3(2), 49–59 (1984)CrossRefGoogle Scholar
  13. 13.
    Vaughan, C.N., O’Malley, M.: Neuromaturation of human locomotion revealed by non-dimensional scaling. Exp. Brain Res. 153(1), 123–127 (2003)CrossRefGoogle Scholar
  14. 14.
    ASIMO: specifications (2013).
  15. 15.
    Mummolo, C., Kim, J.H.: Passive and dynamic gait measures for biped mechanism: formulation and simulation analysis. Robotica 31, 555–572 (2013)Google Scholar
  16. 16.
    Mummolo, C., Mangialardi, L., Kim, J.H.: Quantifying dynamic characteristics of human walking for comprehensive gait cycle. J. Biomech. Eng. 135, 9 (2013)Google Scholar
  17. 17.
    Messuri, D., Klen, C.: Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion. IEEE J. Robot. Autom. 1(3), 132–141 (1985)CrossRefGoogle Scholar
  18. 18.
    Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin: Generalized stability criterion for walking vehicles. In: Proceedings of International Conference Climbing and Walking Robots, pp. 71–76. Brussels, Belgium (1998)Google Scholar
  19. 19.
    Lin, B., Song, S.: Dynamic modeling, stability and energy efficiency of a quadrupedal walking machine. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 367–373. Atlanta, Georgia (1993)Google Scholar
  20. 20.
    Dermitzakis, K., Carbajal, J., Mardenb, J.: Scaling laws in robotics. Procedia Comput. Sci. 7, 250–252 (2011)CrossRefGoogle Scholar
  21. 21.
    Waldron, K.J., Hubert, C.: Scaling of robotic mechanisms. In: Proceedings. IEEE International Conference on Robotics and Automation, ICRA’00, vol. 1, pp. 40–45 (2000)Google Scholar
  22. 22.
    Caprari, G., Estier, T., Siegwart, R.: Fascination of down scaling—alice the sugar cube robot. J. Micromechatronics 1(3), 177–189 (2002)CrossRefGoogle Scholar
  23. 23.
    Lemire, D.: Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern Recogn. 42(9), 2169–2180 (2009)CrossRefGoogle Scholar
  24. 24.
    Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)Google Scholar
  25. 25.
    Rahman, S.: Generating human-like social motion in a human-looking humanoid robot: the biomimetic approach. In: Proceedings of 2013 IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO 2013), acceptedGoogle Scholar
  26. 26.
    Zuntz, N., Geppert, G.: Ueber die Natur der normalen Athemreize und den Ort ihrer Wirkung. Eur. J. Appl. Physiol. 38, 337–338 (1886)CrossRefGoogle Scholar
  27. 27.
    Taylor, C.R., Heglund, N.C., Maloiy, G.M.: Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. Exp. Biol. 97, 1–21 (1982)Google Scholar
  28. 28.
    Froget, G., Butler, P.J., Woakes, A.J., et al.: Heart rate and energetics of freeranging king penguins (Aptenodytes patagonicus). J. Exp. Biol. 207(Pt 22), 3917–3926 (2004)CrossRefGoogle Scholar
  29. 29.
    Nakatsukasa, M., Ogihara, N., Hamada, Y., et al.: Energetic costs of bipedal and quadrupedal walking in Japanese macaques. Am. J. Phys. Anthropol. 124(3), 248–256 (2004)CrossRefGoogle Scholar
  30. 30.
    Griffin, T.M., Kram, R., Wickler, S.J., Hoyt, D.F.: Biomechanical and energetic determinants of the walk-trot transition in horses. J. Exp. Biol. 207(Pt 24), 4215–4223 (2004)CrossRefGoogle Scholar
  31. 31.
    Taylor, C.R.: Relating the mechanics and energetics during exercise. Adv. Vet. Sci. Comp. Med. 38A, 181–215 (1994)Google Scholar
  32. 32.
    Roberts, T.J., Kram, R., Weyand, P.G., Taylor, C.R.: Energetics of bipedal running. I. Metabolic cost of generating force. J. Exp. Biol. 201(Pt 19), 2745–2751 (1998)Google Scholar
  33. 33.
    Taylor, C.R., Schmidt-Nielsen, K., Raab, J.L.: Scaling of energetic cost of running to body size in mammals. Am. J. Physiol. 219(4), 1104–1107 (1970)CrossRefGoogle Scholar
  34. 34.
    Pandolf, K.B., Givoni, B., Goldman, R.F.: Predicting energy expenditure with loads while standing or walking very slowly. J. Appl. Physiol. 43(4), 577–581 (1977)CrossRefGoogle Scholar
  35. 35.
    Bennett, A.F., John-Alder, H.B.: The effect of body temperature on the locomotory energetics of lizards. J. Comp. Physiol. [B] 155(1), 21–27 (1984)CrossRefGoogle Scholar
  36. 36.
    Waters, R.L., Lunsford, B.R., Perry, J., Byrd, R.: Energy–speed relationship of walking: standard tables. J. Orthop. Res. 6(2), 215–222 (1988)CrossRefGoogle Scholar
  37. 37.
    Steudel-Numbers, K.L., Tilkens, M.J.: The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominins. J. Hum. Evol. 47(1–2), 95–109 (2004)CrossRefGoogle Scholar
  38. 38.
    Saibene, F., Minetti, A.E.: Biomechanical and physiological aspects of legged locomotion in humans. Eur. J. Appl. Physiol. 88(4–5), 297–316 (2003)CrossRefGoogle Scholar
  39. 39.
    Minetti, A.E., Saibene, F., Ardigo, L.P., Atchou, G., Schena, F., Ferretti, G.: Pygmy locomotion. Eur. J. Appl. Physiol. Occup. Physiol. 68(4), 285–290 (1994)Google Scholar
  40. 40.
    Pontzer, H.: A new model predicting locomotor cost from limb length via force production. J. Exp. Biol. 208(Pt 8), 1513–1524 (2005)CrossRefGoogle Scholar
  41. 41.
    Gabrielli, G., von Karman, T.: What price speed—specific power required for propulsion of vehicles. Mech. Eng. 72(10), 775–781 (1950)Google Scholar
  42. 42.
    Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)CrossRefGoogle Scholar
  43. 43.
    Collins, S., Wisse, M., Ruina, A.: A three-dimensional passive-dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20, 607–615 (2001)CrossRefGoogle Scholar
  44. 44.
    Bhounsule, P., Pranav, A., Cortell, J., Ruina, A.: Design and control of ranger: an energy-efficient, dynamic walking robot. In: Proceedings of CLAWAR (2012)Google Scholar
  45. 45.
    Alexandrov, A.V., Frolov, A.A., Horak, F.B., Carlson-Kuhta, P., Park, S.: Feedback equilibrium control during human standing. Biol. Cybern. 93, 309–322 (2005)CrossRefGoogle Scholar
  46. 46.
    Peterka, R.J.: Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097–1118 (2002)CrossRefGoogle Scholar
  47. 47.
    Mergner, T., Maurer, C., Peterka, R.J.: A multisensory posture control model of human upright stance. Prog. Brain Res. 142, 189–201 (2003)CrossRefGoogle Scholar
  48. 48.
    Maurer, C., Mergner, T., Peterka, R.J.: Multisensory control of human upright stance. Exp. Brain Res. 171, 231–250 (2006)CrossRefGoogle Scholar
  49. 49.
    Mergner, T.: A neurological view on reactive human stance control. Annu. Rev. Control 34, 177–198 (2010)CrossRefGoogle Scholar
  50. 50.
    Mergner, T., Schweigart, G., Fennell, L.: Vestibular humanoid postural control. J. Physiol. Paris 103, 178–194 (2009)Google Scholar
  51. 51.
    Lippi, V., Mergner, T., Hettich, G.: A Bio-inspired Modular System for Humanoid Posture Control. In: Ugur, E., Oztop, E., Morimoto, J., Ishii, S. (eds.) Proceedings of IROS 2013 Workshop on Neuroscience and Robotics “Towards a robot-enabled, neuroscience-guided healthy society”, 3 November 2013, Tokyo, JapanGoogle Scholar
  52. 52.
    Hettich, G., Lippi, V., Mergner, T.: Human-like sensor fusion mechanisms in a postural control robot. In: Neurotechnix 2013, Sensory Fusion for Diagnostics and Neurorehabilitation - SensoryFusion 2013, 18–20 September 2013, Vilamoura, PortugalGoogle Scholar
  53. 53.
    Angel P. del Pobil: research benchmarks V1. EURON report (2005)Google Scholar
  54. 54.
    R. Steven rainwater: robot competition FAQ.
  55. 55.
    Kitano, Hiroaki, Asada, Minoru: The RoboCup humanoid challenge as the millennium challenge for advanced robotics. Adv. Robot. 13(8), 723–737 (2000)CrossRefGoogle Scholar
  56. 56.
    Darpa robotic challenge trials.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Diego Torricelli
    • 1
    Email author
  • Rahman S. M. Mizanoor
    • 2
  • Vittorio Lippi
    • 3
  • Maarten Weckx
    • 2
  • Glenn Mathijssen
    • 2
  • Bram Vanderborght
    • 2
  • Thomas Mergner
    • 3
  • Dirk Lefeber
    • 2
  • Jose L. Pons
    • 1
  1. 1.Bioengineering Group (GBIO)Spanish National Research Center (CSIC)MadridSpain
  2. 2.Department of Mechanical EngineeringVrije Universiteit BrusselBrusselsBelgium
  3. 3.Neurology, NeurozentrumUniversity of FreiburgFreiburgGermany

Personalised recommendations