Advertisement

Quantitative Measurements of Octopus vulgaris Arms for Bioinspired Soft Robotics

  • Barbara MazzolaiEmail author
  • Laura MargheriEmail author
  • Cecilia LaschiEmail author
Chapter
Part of the Cognitive Systems Monographs book series (COSMOS, volume 36)

Abstract

Bioinspiration is a popular trend in robotics research. Bioinspired design needs a deep knowledge of the selected biological model in order to extract the key features relevant to the design of the robot system. The octopus is an ideal model for soft robotics and has served as inspiration for the development of octopus-like robots and robot arms. The muscular hydrostat that composes the octopus arms is one of the key principles to imitate from the octopus, as well as the arm suckers. An engineering analysis and measurements is required, especially to understand the dimensions of deformations, the stiffness variability, the forces applied, the working principles of reaching and adhesion. We developed methods for measuring the octopus arm in vivo and we measured elongation and shortening, pulling force, stiffening, and morphology, quantitatively. The resulting data were used to create novel design principles and specifications used in developing new soft robots.

Keywords

Biomimetics Soft robotics Octopus-inspired robotics Anatomical measurements 

Notes

Acknowledgements

The authors wish to acknowledge the support from the European Commission through the OCTOPUS IP, FP7-ICT 2007.8.5, FET Proactive, Embodied Intelligence, Grant agreement no. 231608, 2009-2013, and from COST Action TD0906 ‘Biological Adhesives: from Biology to Biomimetics’ (COST-STSM-TD0906-11884).

References

  1. 1.
    Boyle, P.R.: The UFAW Handbook on the Care and Management of Cephalopods in the Laboratory, p. 63. Universities Federation for Animal Welfare, Herts (1991)Google Scholar
  2. 2.
    Calisti, M., Giorelli, M., Levy, G., Mazzolai, B., Hochner, B., Laschi, C., Dario, P.: An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinsp. Biomim. 6(3), 10Google Scholar
  3. 3.
    Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., Laschi, C.: Design concept and validation of a robotic arm inspired by the octopus. Mater. Sci. Eng. C 31, 1230–1239 (2011)CrossRefGoogle Scholar
  4. 4.
    Dario, P., Carrozza, M.C., Guglielmelli, E., Laschi, C., Menciassi, A., Micera, S., Vecchi, F.: Robotics as a future and emerging technology: biomimetics, cybernetics and neuro-robotics in European projects. IEEE Robot. Autom. Mag. 12(2), 29–43 (2005)CrossRefGoogle Scholar
  5. 5.
    Ijspeert, A., Crespi, A., Ryczko, D., Cabelgruen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007)CrossRefGoogle Scholar
  6. 6.
    Kier, W.M.: Hydrostatic skeletons and muscular hydrostats. In: Biewener, A.A. (ed.) Biomechanics (Structures and System): A Practical Approach, pp. 205–231. IRL Press at Oxford University Press, New York (1992)Google Scholar
  7. 7.
    Kier, W.M., Smith, A.M.: The morphology and mechanics of octopus suckers. Biol. Bull. 178, 126–136 (1990)CrossRefGoogle Scholar
  8. 8.
    Kier, W.M., Smith, A.M.: The structure and adhesive mechanism of octopus suckers. Integr. Comp. Biol. 42, 1146–1153 (2002)CrossRefGoogle Scholar
  9. 9.
    Laschi, C., Mazzolai, B., Cianchetti, M., Margheri, L., Follador, M., Dario, P.: A soft robot arm inspired by the octopus. Advanc. Robot. (Special Issue on Soft Robotics) 26(7) (2012)Google Scholar
  10. 10.
    Laschi, C., Mazzolai, B., Mattoli, V., Cianchetti, M., Dario, P.: Design of a biomimetic robotic octopus arm. Bioinsp. Biomim. 4(1) (2009)Google Scholar
  11. 11.
    Margheri, L., Ponte, G., Mazzolai, B., Laschi, C., Fiorito, G.: Non-invasive study of Octopus vulgaris arm morphology using ultrasound. J. Experiment. Biol. 214, 3727–3731 (2011)CrossRefGoogle Scholar
  12. 12.
    Margheri, L., Laschi, C., Mazzolai, B.: Soft robotic arm inspired by the octopus. I. From biological functions to artificial requirements. Bioinsp. Biomim. 7(2) (2012)Google Scholar
  13. 13.
    Margheri, L., Mazzolai, B., Cianchetti, M., Dario, P., Laschi, C.: Tools and methods for experimental in-vivo measurement and biomechanical characterization of an Octopus vulgaris arm. In: Proceedings 31st IEEE International Conference Engineering in Medicine and Biology Society EMBC ’09, pp. 7196–7199. MN, USA (2009)Google Scholar
  14. 14.
    Margheri, L., Mazzolai, B., Ponte, G., Fiorito, G., Dario, P., Laschi, C.: Methods and tools for the anatomical study and experimental in vivo measurement of the Octopus vulgaris arm for biomimetic design BioRob 2010: Third IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 467–472. Tokyo, Japan (2010)Google Scholar
  15. 15.
    Messenger, J.B., Nixon, M., Ryan, K.P.: Magnesium chloride as an anaesthetic for cephalopods. Comp. Biochem. Physiol. C 82, 203–205 (1985)CrossRefGoogle Scholar
  16. 16.
    Naef, A.: Fauna and Flora of the Bay of Naples. Cephalopoda. Jerusalem: Israel Program for Scientific Translations, p. 292 (1972)Google Scholar
  17. 17.
    Nixon, M., Dilly, P.N.: Sucker surfaces and prey capture. Symp. Zool. Soc. Lond. 38, 447–511 (1977)Google Scholar
  18. 18.
    Packard, A.: The skin of cephalopods (coleoids): general and special adaptations. In: Trueman, E.R., Clarke, M.R. (eds.) The Mollusca-Form and Function, pp. 37–67. Academic Press, San Diego (1988)CrossRefGoogle Scholar
  19. 19.
    Scherge, M., Gorb, S.: Biological Micro and Nano-Tribology. Springer, New York (2001)CrossRefGoogle Scholar
  20. 20.
    Scholten, R.R., Pillen, S., Verrips, A., Zwarts, M.J.: Quantitative ultrasonography of skeletal muscles in children: normal values. Muscle Nerve 27, 693–698 (2003)Google Scholar
  21. 21.
    Smith, K.K., Kier, W.M.: Trunks, tongues and tentacles: moving with skeletons of muscle. Am. Sci. 77, 28–35 (1989)Google Scholar
  22. 22.
    Sumbre, G., Gutfreund, Y., Fiorito, G., Flash, T., Hochner, B.: Control of octopus arm extension by a peripheral motor program. Science 293, 1845–1848 (2001)Google Scholar
  23. 23.
    Tramacere, F., Appel, E., Mazzolai, B., Gorb, S.N.: Hairy suckers: the surface microstructure and its possible functional significance in the Octopus vulgaris sucker, Beilstein. J. Nanotechnol. 5, 561–565 (2014)Google Scholar
  24. 24.
    Tramacere, F., Beccai, L., Kuba, M., Gozzi, A., Bifone, A., Mazzolai, B.: The morphology and adhesion mechanism of octopus vulgaris suckers. PLoS ONE 8(6), e65074 (2013)CrossRefGoogle Scholar
  25. 25.
    Tramacere, F., Kovalev, A., Kleinteich, T., Gorb, S.N., Mazzolai, B.: Structure and mechanical properties of Octopus vulgaris suckers. J. R. Soc. Interface 11, 20130816 (2014)CrossRefGoogle Scholar
  26. 26.
    Vogel, S.: Comparative Biomechanics: Life‘s Physical World. Princeton University Press, Oxford, UK (2003)zbMATHGoogle Scholar
  27. 27.
    Walker, I.D.: Some issues in creating “invertebrate” robots. In: Proceedings of the International Symposium on Adaptive Motion of Animals and Machines. Montreal, Canada (2000)Google Scholar
  28. 28.
    Walker, I.D., Dawson, D., Flash, T., Grasso, F., Hanlon, R., Hochner, B., Kier, W., Pagano, C., Rahn C.D., Zhang, Q.M.: Continuum robot arms inspired by cephalopods. In: Proceedings SPIE Conference Unmanned Ground Vehicle Technology, pp. 303–314. Orlando, FL (2005)Google Scholar
  29. 29.
    Webb, B., Consi, T.: Biorobotics: Methods and Applications, MIT Press (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Micro-BioRobotics, Istituto Italiano di TecnologiaGenoaItaly
  2. 2.The BioRobotics Institute, Scuola Superiore Sant’AnnaPisaItaly

Personalised recommendations