Skip to main content

Predicting Drug Target Interaction by Integrating Drug Fingerprint and Drug Side Effect Using Machine Learning

  • Conference paper
  • First Online:
The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019) (AMLTA 2019)

Abstract

Drug discovery is an important step before drug development. Drug discovery is the process of identifying, testing a drug before medical use. Drugs are used to cure diseases by interacting with the target, which is the protein in the human cells. Many resources are wasted (cost and time) on lab experiments to discover drugs and its application. Yet machine learning enhanced the process of drug discovery and the prediction of drug-target interaction, which helped in predicting new drugs and finding more applications for old drugs. Predicting drug-target interaction starting by studying the nature of drugs and its properties. Most of the datasets existing are drugs, targets and their interactions datasets. We compiled our dataset to include side effect as drug feature. The dataset contains 400 drugs, 794 targets and 3990 side effects. In this study, a machine-learning model is implemented using three different classifiers: Decision Tree, Random Forest (RF) and K-Nearest Neighbors (K-NN) for classification. Drug fingerprint and side effect were used as input features to train our model. Three different experiments were conducted using fingerprint, side effect and both fingerprint and side effect. Results showed improvement in prediction when integrating both drug fingerprint and side effect. K-NN scored best results in the three experiment with an average accuracy of 94.69%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi, J.-Y., Yiu, S.-M., Li, Y., Leung, H.C.M., Chin, F.Y.L.: Predicting drug–target interaction for new drugs using enhanced similarity measures and super-target clustering. Methods 83, 98–104 (2015)

    Article  Google Scholar 

  2. Lan, C., Chandrasekarany, S., Huan, J.: A distributed and privatized framework for drug-target interaction prediction. In: International Conference on Bioinformatics and Biomedicine (BIBM), pp. 731–734. IEEE (2016)

    Google Scholar 

  3. Statistics: DrugBank. https://www.drugbank.ca/stats. Accessed Nov 2018

  4. Bolton, E., Wang, Y., Thiessen, P., Bryant, S.: PubChem: integrated platform of small molecules and biological activities. Ann. Rep. Comput. Chem. 4, 217–241 (2008)

    Article  Google Scholar 

  5. Hurle, M., Yang, L., Xie, Q., Rajpal, D., Sanseau, P., Agarwal, P.: Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther. 93(4), 335–341 (2013)

    Article  Google Scholar 

  6. Chen, X., Yan, C., Zhang, X., Zhang, X., Dai, F., Yin, J., Zhang, Y.: Drug–target interaction prediction: databases, web servers and computational models. Briefings Bioinf. 17(4), 696–712 (2015)

    Article  Google Scholar 

  7. Li, H., Gao, Z., Kang, L., Zhang, H., Yang, K., Yu, K., Luo, X., Zhu, W., Chen, K., Shen, J., Wang, X., Jiang, H.: TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res. 34(Web Server), W219–W224 (2006)

    Article  Google Scholar 

  8. Kanehisa, M.: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34(90001), D354–D357 (2006)

    Article  Google Scholar 

  9. Schomburg, I.: BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. 32(90001), 431D–433D (2004)

    Article  Google Scholar 

  10. Kuhn, M., Szklarczyk, D., Franceschini, A., Mering, C., Jensen, L., Bork, P.: STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res. 40(D1), D876–D880 (2011)

    Article  Google Scholar 

  11. Wishart, D.S., Knox, C., Guo, A.C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., Hassanali, M.: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(suppl_1), D901–D906 (2007)

    Article  Google Scholar 

  12. Coelho, E., Oliveira, J., Arrais, J.: Ensemble-based methodology for the prediction of drug-target interactions. In: 29th International Symposium on Computer-Based Medical Systems (CBMS), pp. 36–41. IEEE (2016)

    Google Scholar 

  13. Wishart, D.S.: DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(90001), D668–D672 (2006)

    Article  Google Scholar 

  14. Yamanishi, Y., Kotera, M., Kanehisa, M., Goto, S.: Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12), i246–i254 (2010)

    Article  Google Scholar 

  15. Galeano, D., Paccanaro, A.: Drug targets prediction using chemical similarity. In: XLII Latin American Computing Conference (CLEI), pp. 1–7. IEEE (2016)

    Google Scholar 

  16. Stark, C.: BioGRID: a general repository for interaction datasets. Nucleic acids Res. 34(suppl 1), D535–D539 (2006)

    Article  Google Scholar 

  17. Hao, M., Bryant, S., Wang, Y.: Predicting drug-target interactions by dual-network integrated logistic matrix factorization. Sci. Rep. 7(1), 40376 (2017)

    Article  Google Scholar 

  18. Sinha, A., Singh, P., Prakash, A., Pal, D., Dube, A., Kumar, A.: Putative drug and vaccine target identification in leishmania donovani membrane proteins using naïve bayes probabilistic classifier. IEEE/ACM Trans. Comput. Biol. Bioinform. 14, 204–211 (2017)

    Article  Google Scholar 

  19. Kumar, A., Misra, P., Sisodia, B., Shasany, A., Sundar, S., Dube, A.: Proteomic analyses of membrane enriched proteins of Leishmania donovani Indian clinical isolate by mass spectrometry. Parasitol. Int. 64(4), 36–42 (2015)

    Article  Google Scholar 

  20. Li, Z., Han, P., You, Z.-H., Li, X., Zhang, Y., Yu, H., Nie, R., Chen, X.: In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences. Sci. Rep. 7(1) (2017)

    Google Scholar 

  21. Gunther, S., Kuhn, M., Dunkel, M., Campillos, M., Senger, C., Petsalaki, E., Ahmed, J., Urdiales, E.G., Gewiess, A., Jensen, L.J., Schneider, R., Skoblo, R., Russell, R.B., Bourne, P.E., Bork, P., Preissner, R.: SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res. 36(Database), D919–D922 (2007)

    Article  Google Scholar 

  22. Azuaje, F., Zhang, L., Devaux, Y., Wagner, D.: Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci. Rep. 1(1), 52 (2011)

    Article  Google Scholar 

  23. Cao, D.-S., Liu, S., Xu, Q.-S., Lu, H.-M., Huang, J.-H., Hu, Q.-N., Liang, Y.-Z.: Large-scale prediction of drug–target interactions using protein sequences and drug topological structures. Anal. Chim. Acta 752, 1–10 (2012)

    Article  Google Scholar 

  24. Cao, D.-S., Hu, Q.-N., Xu, Q.-S., Yang, Y.-N., Zhao, J.-C., Lu, H.-M., Zhang, L.-X., Liang, Y.-Z.: In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint. Anal. Chim. Acta 692(1–2), 50–56 (2011)

    Article  Google Scholar 

  25. Campillos, M., Kuhn, M., Gavin, A., Jensen, L., Bork, P.: Drug target identification using side-effect similarity. Science 321(5886), 263–266 (2008)

    Article  Google Scholar 

  26. Fayz, S., Rizka, M., Maghraby, F.: Cervical cancer diagnosis using random forest classifier with SMOTE and feature reduction techniques. IEEE Access 1 (2018)

    Google Scholar 

  27. Wu, Y., Wang, H., Wu, F.: Automatic classification of pulmonary tuberculosis and sarcoidosis based on random forest. In: 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE (2017)

    Google Scholar 

  28. Bombara, G., Vasile, C.-I., Penedo, F., Yasuoka, H., Beltaz, C.: A decision tree approach to data classification using signal temporal logic. In: Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control - HSCC 2016 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fahima A. Maghraby or Yasser M. Omar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saad, A., Maghraby, F.A., Omar, Y.M. (2020). Predicting Drug Target Interaction by Integrating Drug Fingerprint and Drug Side Effect Using Machine Learning. In: Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019. Advances in Intelligent Systems and Computing, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-14118-9_28

Download citation

Publish with us

Policies and ethics