Skip to main content

MolecRank: A Specificity-Based Network Analysis Algorithm

Ranking Therapeutic Molecules in the Bibliome

  • Conference paper
  • First Online:
Book cover The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019) (AMLTA 2019)

Abstract

Biomedical scientists often search databases of therapeutic molecules to answer a set of drug-related queries. In this paper, we present a novel network algorithm called MolecRank that is specialized in searching and ranking molecules using a biomedical literature. Starting with a disease-related set of publications (e.g., depression), a feature extraction step is performed to identify the biological features associated with the drugs of study. The MolecRank is a network centrality algorithm that is specialized in deriving a rank when specificity is in question. The algorithm’s promise is two folds (a) an interesting search-and-rank tool that demonstrated its importance in the drug discovery research, (b) a theoretical network centrality measure that is based on the notion of specificity. We performed our experiments against a depression-related literature dataset. The results shows an interesting order that is significantly different from well-advertised drugs (e.g., Cymbalta#10 though well-advertised). We conclude that not all well-advertised drugs are most specific. This striking evidence highlights the significance of specificity as an important measure in discovering new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bragazzi, N.L., Nicolini, C.: A leader genes approach-based tool for molecular genomics: from gene-ranking to gene-network systems biology and biotargets predictions. J. Comput. Sci. Syst. Biol. 6, 165–176 (2013)

    Article  Google Scholar 

  2. Winter, C., Kristiansen, G., Kersting, S., Roy, J., Aust, D., Knösel, T., Rümmele, P., Jahnke, B., Hentrich, V., Rückert, F., Niedergethmann, M., Weichert, W., Bahra, M., Schlitt, H.J., Settmacher, U., Friess, H., Büchler, M., Saeger, H.-D., Schroeder, M., Pilarsky, C., Grützmann, R.: Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLOS Comput. Biol. 8(5), 1–16 (2012)

    Article  Google Scholar 

  3. Weston, J., Elisseeff, A., Zhou, D., Leslie, C.S., Noble, W.S.: Protein ranking: from local to global structure in the protein similarity network. Proc. Nat. Acad. Sci. U. S. A. 101(17), 6559–6563 (2004)

    Article  Google Scholar 

  4. Wren, J.D., Garner, H.R.: Shared relationship analysis: ranking set cohesion and commonalities within a literature-derived relationship network. Bioinformatics 20(2), 191–198 (2004)

    Article  Google Scholar 

  5. Chen, J., Jagannatha, A.N., Fodeh, S.J., Yu, H.: Ranking medical terms to support expansion of lay language resources for patient comprehension of electronic health record notes: adapted distant supervision approach. JMIR Med. Inform. 5(4), e42 (2017)

    Article  Google Scholar 

  6. Koschützki, D., Schwöbbermeyer, H., Schreiber, F.: Ranking of network elements based on functional substructures. J. Theoret. Biol. 248(3), 471–479 (2007)

    Article  Google Scholar 

  7. Junker, B.H., Koschützki, D., Schreiber, F.: Exploration of biological network centralities with CentiBIN. BMC Bioinform. 7(1), 219 (2006)

    Article  Google Scholar 

  8. Hopkins, A.L.: Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4(11), 682–690 (2008)

    Article  MathSciNet  Google Scholar 

  9. Bodnarchuk, M.S., Heyes, D.M., Dini, D., Chahine, S., Edwards, S.: Role of deprotonation free energies in pKa prediction and molecule ranking. J. Chem. Theory Comput. 10(6), 2537–2545 (2014)

    Article  Google Scholar 

  10. Koshland, D.E.: Application of a theory of enzyme specificity to protein synthesis. Proc. Nat. Acad. Sci. 44(2), 98–104 (1958)

    Article  Google Scholar 

  11. Lehninger, A., Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry, 5th edn. W. H. Freeman, San Francisco (2008)

    Google Scholar 

  12. Wood, E.J.: Harper’s Biochemistry 24th edition by R.K. Murray, D.K. Granner, P.A. Mayes and V.W Rodwell. pp 868. Appleton & Lange, Stamford, CT (1996). £ 28.95 isbn 0-8385-3612-3. Biochem. Educ. 24(4), 237–237 (1996)

    Google Scholar 

  13. Hu, L., Fawcett, J.P., Gu, J.: Protein target discovery of drug and its reactive intermediate metabolite by using proteomic strategy. Acta Pharm. Sin. B 2(2), 126–136 (2012)

    Article  Google Scholar 

  14. Hefti, F.F.: Requirements for a lead compound to become a clinical candidate. BMC Neurosci. 9(3), S7 (2008)

    Article  Google Scholar 

  15. Degterev, A., Maki, J.L., Yuan, J.: Activity and specificity of necrostatin-1, small-molecule inhibitor of rip1 kinase. Cell Death Differ. 20(2), 366 (2013)

    Article  Google Scholar 

  16. Eaton, B.E., Gold, L., Zichi, D.A.: Let’s get specific: the relationship between specificity and affinity. Chem. Biol. 2(10), 633–638 (1995)

    Article  Google Scholar 

  17. Radhakrishnan, M.L., Tidor, B.: Specificity in molecular design: a physical framework for probing the determinants of binding specificity and promiscuity in a biological environment. J. Phys. Chem. B 111(47), 13419–13435 (2007)

    Article  Google Scholar 

  18. Strovel, J., Sittampalam, S., Coussens, N.P., Hughes, M., Inglese, J., Kurtz, A., Andalibi, A., Patton, L., Austin, C., Baltezor, M., et al.: Early drug discovery and development guidelines: for academic researchers, collaborators, and start-up companies (2016)

    Google Scholar 

  19. Hartley, J.A., Lown, J.W., Mattes, W.B., Kohn, K.W.: Dna sequence specificity of antitumor agents: oncogenes as possible targets for cancer therapy. Acta Oncol. 27(5), 503–510 (1988)

    Article  Google Scholar 

  20. Timchenko, L.T., Timchenko, N.A., Caskey, C.T., Roberts, R.: Novel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy. Hum. Mol. Genet. 5(1), 115–121 (1996)

    Article  Google Scholar 

  21. Settles, B.: ABNER: an open source tool for automatically tagging genes, proteins, and other entity names in text. Bioinformatics 21(14), 3191–3192 (2005)

    Article  Google Scholar 

  22. Carpenter, B.: Lingpipe for 99.99% recall of gene mentions. In: Proceedings of the Second BioCreative Challenge Evaluation Workshop, vol. 23, pp. 307–309 (2007)

    Google Scholar 

  23. Candan, K.S., Liu, H., Suvarna, R.: Resource description framework: metadata and its applications. SIGKDD Explor. Newsl. 3(1), 6–19 (2001)

    Article  Google Scholar 

  24. Shannon, C.E.: Prediction and entropy of printed English. Bell Labs Tech. J. 30(1), 50–64 (1951)

    Article  Google Scholar 

  25. Koschützki, D., Schreiber, F.: Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2, 193 (2008)

    Google Scholar 

  26. Jeong, H., Mason, S.P., Barabási, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  27. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality Indices, pp. 16–61. Springer, Berlin (2005)

    MATH  Google Scholar 

  28. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  29. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

    Article  Google Scholar 

  30. Zhou, Q., Womer, F.Y., Kong, L., Wu, F., Jiang, X., Zhou, Y., Wang, D., Bai, C., Chang, M., Fan, G., et al.: Trait-related cortical-subcortical dissociation in bipolar disorder: analysis of network degree centrality. J. Clin. Psychiatry 78(5), 584–591 (2017)

    Article  Google Scholar 

  31. Costenbader, E., Valente, T.W.: The stability of centrality measures when networks are sampled. Soc. Netw. 25(4), 283–307 (2003)

    Article  Google Scholar 

  32. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999)

    Google Scholar 

  33. Pretto, L.: A theoretical analysis of google’s pagerank. In: String Processing and Information Retrieval, pp. 125–136. Springer (2002)

    Google Scholar 

Download references

Acknowledgement

The authors would like thank Greg Temsi, Ramiro Barrantes for their valuable discussions. The authors also greatly appreciate the tremendous feedback on this work giving by Dr. Barabasi and his lab members. We also thank Dr. Karin Verspoor of University of Melbourne for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdeen Hamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamed, A.A., Leszczynska, A., Schreiber, M. (2020). MolecRank: A Specificity-Based Network Analysis Algorithm. In: Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019. Advances in Intelligent Systems and Computing, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-14118-9_16

Download citation

Publish with us

Policies and ethics