Skip to main content

Barrier Coverage Problem in 2D

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2018)

Abstract

This paper deals with the NP-hard problem of covering a line segment by n initially arbitrarily arranged circles on the plane by moving their centers to the segment in such a way that the sum of the Euclidean distances between the initial and final positions of the centers of the disks would be minimal. In the case of identical circles, a dynamic programming algorithm is known, which constructs a \(\sqrt{2}\)–approximate solution to the problem with \(O(n^4)\)–time complexity. In this paper, we propose a new algorithm that has the same accuracy, but the complexity of which is reduced by \(n^2\) times to \(O(n^2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, A.M., Wang, H.: Minimizing the aggregate movements for interval coverage. Algorithmica 78(1), 47–85 (2017)

    Article  MathSciNet  Google Scholar 

  2. Astrakov, S.N., Erzin, A.I.: Efficient band monitoring with sensors outer positioning. Optim. A J. Math. Program. Oper. Res. 62(10), 1367–1378 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Benkoczi, R., Friggstad, Z., Gaur, D., Thom, M.: Minimizing total sensor movement for barrier coverage by non-uniform sensors on a line. In: Bose, P., Gąsieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536, pp. 98–111. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28472-9_8

    Chapter  MATH  Google Scholar 

  4. Bhattacharya, B.K., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal movement of mobile sensors for barrier coverage of a planar region. Theor. Comput. Sci. 410(52), 5515–5528 (2009)

    Article  MathSciNet  Google Scholar 

  5. Cardei, M., Du, D.-Z.: Improving wireless sensor network lifetime through power aware organization. ACM Wirel. Netw. 11(3), 333–340 (2005)

    Article  Google Scholar 

  6. Cardei, M., Wu, J.: Energy-efficient coverage problems in wireless ad-hoc sensor networks. Comput. Commun. 29, 413–420 (2006)

    Article  Google Scholar 

  7. Carle, J., Simplot, D.: Energy-efficient area monitoring by sensor networks. IEEE Comput. 37(2), 40–46 (2004)

    Article  Google Scholar 

  8. Carmi, P., Katz, M.J., Saban, R., Stein, Y.: Improved PTASs for convex barrier coverage. In: Solis-Oba, R., Fleischer, R. (eds.) WAOA 2017. LNCS, vol. 10787, pp. 26–40. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89441-6_3

    Chapter  Google Scholar 

  9. Chen, A., Kumar, S., Lai, T.H.: Designing localized algorithms for barrier coverage. In: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, pp. 63–74 (2007)

    Google Scholar 

  10. Chen, A., Lai, T.H., Xuan, D.: Measuring and guaranteeing quality of barrier coverage in wireless sensor networks. In: Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 421–430 (2008)

    Google Scholar 

  11. Chen, D.Z., Tan, X., Wang, H., Wu, G.: Optimal point movement for covering circular regions. Algorithmica 72(2), 379–399 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cherry, A., Gudmundsson, J., Mestre, J.: Barrier coverage with uniform Radii in 2D. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 57–69. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_5

    Chapter  Google Scholar 

  13. Czyzowicz, J., et al.: On minimizing the sum of sensor movements for barrier coverage of a line segment. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14785-2_3

    Chapter  Google Scholar 

  14. Dobrev, S., et al.: Complexity of barrier coverage with relocatable sensors in the plane. Theor. Comput. Sci. 579, 64–73 (2015)

    Article  MathSciNet  Google Scholar 

  15. Erzin, A.I., Astrakov, S.N.: Min-density stripe covering and applications in sensor networks. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6784, pp. 152–162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21931-3_13

    Chapter  Google Scholar 

  16. Erzin, A.I., Astrakov, S.N.: Covering a plane with ellipses. Optim.: A J. Math. Program. Oper. Res. 62(10), 1357–1366 (2013)

    Article  MathSciNet  Google Scholar 

  17. Erzin, A.I., Shabelnikova, N.A.: On the density of a strip covering with identical sectors. J. Appl. Ind. Math. 9(4), 461–468 (2015)

    Article  MathSciNet  Google Scholar 

  18. He, S., Chen, J., Li, X., Shen, X., Sun, Y.: Mobility and intruder prior information improving the barrier coverage of sparse sensor networks. IEEE Trans. Mob. Comput. 13(6), 1268–1282 (2014)

    Article  Google Scholar 

  19. Kershner, R.: The number of circles covering a set. Am. J. Math. 61(3), 665–671 (1939)

    Article  MathSciNet  Google Scholar 

  20. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Proceedings of the 11th Annual International Conference on Mobile Computing and Networking, pp. 284–298 (2005)

    Google Scholar 

  21. Saipulla, A., Westphal, C., Liu, B., Wang, J.: Barrier coverage with line-based deployed mobile sensors. Ad Hoc Netw. 11, 1381–1391 (2013)

    Article  Google Scholar 

  22. Si, P., Wu, C., Zhang, Y., Jia, Z., Ji, P., Chu, H.: Barrier coverage for 3D camera sensor networks. Sensors 17(8), 1771 (2017)

    Article  Google Scholar 

  23. Wu, F., Gui, Y., Wang, Z., Gao, X., Chen, G.: A survey on barrier coverage with sensors. Front. Comput. Sci. 10(6), 968–984 (2016)

    Article  Google Scholar 

  24. Zalyubovskiy, V., Erzin, A., Astrakov, S., Choo, H.: Energy-efficient area coverage by sensors with adjustable ranges. Sensors 9(4), 2446–2460 (2009)

    Article  Google Scholar 

  25. Zhao, L., Bai, G., Shen, H., Tang, Z.: Strong barrier coverage of directional sensor networks with mobile sensors. Int. J. Distrib. Sens. Netw. 14(2) (2018). https://doi.org/10.1177/1550147718761582

    Article  Google Scholar 

Download references

Acknowledgements

The research is partly supported by the Russian Foundation for Basic Research (Projects 16-07-00552 and 17-51-45125) and by the Ministry of Science and Higher Education of the Russian Federation under the 5-100 Excellence Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Erzin .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Example. Let it is required to cover the line segment [0, 4.5] by three identical disks with radii equal to 1, which initial positions of the centers are \(p_1=(-0.5,1)\), \(p_2=(2.5,2)\) and \(p_3=(5.5,0)\) (Fig. 4(a)).

Fig. 4.
figure 4

(a) Initial position of the disks; (b) one disk in the case when \(l\le 1\); (c) one disk in the case when \(1<l\le 2\); (d) two disks in the case when \(l\le 1\).

Fig. 5.
figure 5

(a) Two disks in the case when \(1<l\le 2\); (b) two disks in the case when \(2<l\le 3.5\); (c) two disks in the case when \(3.5<l\le 4\); (d) the optimal OPC.

Since \(x_1<0\), then

$$ S_1(l) = {\left\{ \begin{array}{ll} -x_1+y_1=1.5, &{} l\le 1\\ l-1-x_1+y_1=l+0.5, &{} l>1\\ +\infty , &{} l>2. \end{array}\right. } $$

The disk 1 moves to the point (0, 0), if \(l\le 1\) (Fig. 4(b)) and it moves to the point \((l-1,0)\), if \(l>1\) (Fig. 4(c)). Thus, we have the switching points 0, 1, 2 and 4.5.

Let now two circles participate in the covering. If \(l\le 1\), then it is easy to see, that only disk 1 covers the segment [0,l] and \(S_2(l)=1.5\) (Fig. 4(d)).

If \(1<l\le 2\), then the segment [0, l] can be covered ether by one disk 1 or by one disk 2. We have that \(d(p_1,\hat{p}_1)=l+0.5\le d(p_2,\hat{p}_2)\). So, in this case only disk 1 covers the segment [0, l]. Suppose that both disks 1 and 2 participate in the covering of the segment [0, l]. Let us denote by \(x\in (1,3)\) the point at which the center of disk 2 moves. Then the segment \([0,x-1]\) must be covered by disk 1. If \(x\le 2.5\) then \(S_2(l)=2+2.5-x+S_1(x-1)=4\). If \(2.5<x\le 3\) then \(S_2(l)=\min \limits _{x\in [2.5,3]}\{2+x-2.5+S_1(x-1)\}=\min \limits _{x\in [2.5,3]}\{2x-1\}\). Therefore, in this case only the center of disk 1 moves to the point \((l-1,0)\) (Fig. 5(a)).

If \(2<l\le 3.5\), then the both disks 1 and 2 must participate in the covering of the segment [0, l]. If x is a point where the center of disk 2 moves, then the segment \([0,x-1]\) must be covered by disk 1. For any \(x\in [l-1,2.5]\), we get the same value of \(S_2(l)=4\) and set \(x=2.5\) (Fig. 5(b)).

If \(3.5<l\le 4\), then both disks participate in the covering of the segment [0, l]. If \(x\in [l-1,3]\) is a point where the center of disk 2 moves, then the segment \([0,x-1]\) must be covered by disk 1. In this case \(2.5\le x\le 3\). Moreover, \(x=l-1\) and \(S_2(l)=l-1-2.5+2+1+l-2+0.5=2l-2\) (Fig. 5(c)).

Therefore, the following formula holds

$$ S_2(l) = {\left\{ \begin{array}{ll} 1.5, &{} 0<l\le 1\\ l+0.5, &{} 1<l\le 2\\ 4, &{} 2<l\le 3.5\\ 2l-3, &{} 3.5<l\le 4\\ +\infty , &{} l>4, \end{array}\right. } $$

where the switching points are 0, 1, 2, 3.5, 4, 4.5.

Let now all three sensors participate in the covering. The center of disk 3 can move to the point \(x\in [3.5,4.5]\). Then the segment \([0,x-1]\) must be covered by disks 1 and 2 and

$$ S_3(4.5)=\min \limits _{x\in [3.5,4.5]}\{5.5-x+S_2(x-1)\}=\min \limits _{x\in [3.5,4.5]}\{9.5-x\}=5. $$

Then the center of disk 3 moves to the point (4.5, 0).

The backward recursion allows us to restore the optimal coverage, which is shown in the Fig. 5(d).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erzin, A., Lagutkina, N. (2019). Barrier Coverage Problem in 2D. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2018. Lecture Notes in Computer Science(), vol 11410. Springer, Cham. https://doi.org/10.1007/978-3-030-14094-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14094-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14093-9

  • Online ISBN: 978-3-030-14094-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics