Skip to main content

Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11410))

Abstract

We consider the problem of gathering a set of autonomous, identical, oblivious, asynchronous, mobile robots at a vertex of an anonymous hypercube. The robots operate in Look-Compute-Move cycles. In each cycle, a robot takes a snapshot of the current configuration (Look), then based on the perceived configuration, decides whether to stay idle or to move to an adjacent vertex (Compute), and in the later case makes an instantaneous move accordingly (Move). We have shown that the problem is unsolvable if the robots do not have multiplicity detection capability. With weak multiplicity detection capability, the problem is solvable in an oriented hypercube for any initial configuration of \(2k+1 (k > 0)\) number of robots. For \(4k (k > 0)\) number of robots, the problem is solvable under the same assumptions if and only if the group of automorphism of the configuration is trivial. Our proposed algorithms are optimal with respect to the total number of moves executed by the robots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering many fat mobile robots in the plane. In: ACM Symposium on Principles of Distributed Computing, PODC 2013, Montreal, QC, Canada, 22–24 July 2013, pp. 250–259 (2013). https://doi.org/10.1145/2484239.2484266

  2. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of mobile agents: impact of sense of direction. Theory Comput. Syst. 40(2), 143–162 (2007). https://doi.org/10.1007/s00224-005-1223-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Bose, K., Adhikary, R., Chaudhuri, S.G., Sau, B.: Crash tolerant gathering on grid by asynchronous oblivious robots. CoRR abs/1709.00877 (2017). http://arxiv.org/abs/1709.00877

  4. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_90

    Chapter  Google Scholar 

  5. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012). https://doi.org/10.1137/100796534

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005). https://doi.org/10.1137/S0097539704446475

    Article  MathSciNet  MATH  Google Scholar 

  7. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410(6–7), 481–499 (2009). https://doi.org/10.1016/j.tcs.2008.10.005

    Article  MathSciNet  MATH  Google Scholar 

  8. D’Angelo, G., Stefano, G.D., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids and trees without multiplicity detection. Theor. Comput. Sci. 610, 158–168 (2016). https://doi.org/10.1016/j.tcs.2014.06.045

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering of six robots on anonymous symmetric rings. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 174–185. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22212-2_16

    Chapter  Google Scholar 

  10. D’Angelo, G., Stefano, G.D., Navarra, A.: Gathering on rings under the look-compute-move model. Distrib. Comput. 27(4), 255–285 (2014). https://doi.org/10.1007/s00446-014-0212-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, S., Mihalák, M., Šrámek, R., Vicari, E., Widmayer, P.: Rendezvous of mobile agents when tokens fail anytime. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 463–480. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92221-6_29

    Chapter  Google Scholar 

  12. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46(1), 69–96 (2006). https://doi.org/10.1007/s00453-006-0074-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27860-3_6

    Chapter  MATH  Google Scholar 

  14. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N., Sawchuk, C.: Mobile agents rendezvous when tokens fail. In: Královic̆, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 161–172. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27796-5_15

    Chapter  Google Scholar 

  15. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24698-5_62

    Chapter  Google Scholar 

  16. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005). https://doi.org/10.1016/j.tcs.2005.01.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Godsil, C., Royle, G.F.: Algebraic Graph Theory. GTM, vol. 207. Springer Science & Business Media, New York (2001). https://doi.org/10.1007/978-1-4613-0163-9

    Book  MATH  Google Scholar 

  18. Haba, K., Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: On gathering problem in a ring for 2n autonomous mobile robots. In: Proceedings of the 10th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), poster (2008)

    Google Scholar 

  19. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algorithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13284-1_9

    Chapter  Google Scholar 

  20. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gathering from symmetric configurations without global multiplicity detection. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22212-2_14

    Chapter  Google Scholar 

  21. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of robots in an odd ring without global multiplicity detection. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_48

    Chapter  MATH  Google Scholar 

  22. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411(34–36), 3235–3246 (2010). https://doi.org/10.1016/j.tcs.2010.05.020

    Article  MathSciNet  MATH  Google Scholar 

  23. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008). https://doi.org/10.1016/j.tcs.2007.09.032

    Article  MathSciNet  MATH  Google Scholar 

  24. Koreń, M.: Gathering small number of mobile asynchronous robots on ring. Zeszyty Naukowe Wydziału ETI Politechniki Gdańskiej. Technologie Informacyjne 18, 325–331 (2010)

    Google Scholar 

  25. Kranakis, E., Krizanc, D., Markou, E.: Deterministic symmetric rendezvous with tokens in a synchronous torus. Discrete Appl. Math. 159(9), 896–923 (2011). https://doi.org/10.1016/j.dam.2011.01.020

    Article  MathSciNet  MATH  Google Scholar 

  26. Kranakis, E., Santoro, N., Sawchuk, C., Krizanc, D.: Mobile agent rendezvous in a ring. In: 23rd International Conference on Distributed Computing Systems, ICDCS 2003, Providence, RI, USA, 19–22 May 2003, pp. 592–599 (2003). https://doi.org/10.1109/ICDCS.2003.1203510

  27. Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.: Gathering in dynamic rings. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 339–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0_20

    Chapter  Google Scholar 

  28. Marco, G.D., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355(3), 315–326 (2006). https://doi.org/10.1016/j.tcs.2005.12.016

    Article  MathSciNet  MATH  Google Scholar 

  29. Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching: near-gathering for autonomous mobile robots. Distrib. Comput. 28(5), 333–349 (2015). https://doi.org/10.1007/s00446-015-0248-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007). https://doi.org/10.1016/j.tcs.2007.04.023

    Article  MathSciNet  MATH  Google Scholar 

  31. Stefano, G.D., Navarra, A.: Gathering of oblivious robots on infinite grids with minimum traveled distance. Inf. Comput. 254, 377–391 (2017). https://doi.org/10.1016/j.ic.2016.09.004

    Article  MathSciNet  MATH  Google Scholar 

  32. Stefano, G.D., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017). https://doi.org/10.1007/s00446-016-0278-7

    Article  MathSciNet  MATH  Google Scholar 

  33. Tel, G.: Network orientation. Int. J. Found. Comput. Sci. 5(1), 23–57 (1994). https://doi.org/10.1142/S0129054194000037

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first three authors are supported by NBHM, DAE, Govt. of India, UGC, Govt. of India and CSIR, Govt. of India respectively. We would like to thank the anonymous reviewers for their valuable comments which helped us improve the quality and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manash Kumar Kundu .

Editor information

Editors and Affiliations

Appendix A Proof of Theorem 7

Appendix A Proof of Theorem 7

Consider a configuration \((Q_d, f)\) that has no partitive automorphism. Since we have assumed that the robots are positioned at distinct vertices, there is no distinction between the configuration and the perceived configuration. In other words, we have \(\tilde{f} = f\). Assume that the configuration has no fixed Weber point. Let us assume that there is an algorithm \(\mathcal {A}\) that deterministically solves LeadingWeberPoint. Let \(w_1 \in \mathcal {W}\) be the leading Weber point elected by the robots. Since \(w_1\) is not a fixed vertex, there is a \(w_2 \ne w_1\) such that \(\varphi (w_1) = w_2\), for some \(\varphi \in Aut(G, f)\).

Each robot observes the positions of other robots in its local coordinate system. A local coordinate system of a robot is just an assignment \(\varPsi : V(Q_d) \longrightarrow \{0,1\}^d\), respecting the rule that \(u, v \in V(Q_d)\) are adjacent if and only if \(\varPsi (u), \varPsi (v)\) differ in precisely one bit. Since there is no global agreement, the local coordinate system of each robot is arbitrary, and is chosen by the adversary. Let us formally define the view of a robot. The view of a robot is given by the triplet \(\mathcal {V}_{\varPsi } = (\varPsi , \tilde{f}, me)\), where \(\varPsi : V(Q_d) \longrightarrow \{0,1\}^d\) is the local coordinate system, \(\tilde{f}: \{0,1\}^d \longrightarrow \{0,1\}\) is the multiplicity function defined on the set of vertices expressed in local coordinates, and \(me \in \{0,1\}^d\) is the coordinates of the vertex on which the robot resides. The view \(\mathcal {V}_{\varPsi }\) is the input for algorithm \(\mathcal {A}\). The output \(\mathcal {A}(\mathcal {V}_{\varPsi }) \in \{0,1\}^d\) is the coordinates of the required leading Weber point, i.e., the returned leading Weber point is the vertex \(\varPsi ^{-1}(\mathcal {A}(\mathcal {V}_{\varPsi }))\).

Consider a robot \(r_1\) in the configuration residing at vertex \(v_1\). The robot \(r_1\), using a local coordinate system \(\varPsi _1: V(Q_d) \longrightarrow \{0,1\}^d\), elects \(w_1\) as the leading Weber point. That is, given the input in the coordinate system \(\varPsi _1\), the output of \(\mathcal {A}\) is \(\varPsi _1(w_1)\). Now consider the following cases.

Case 1: Suppose that \(\varphi (v_1) = v_1\). Consider the local coordinate system \(\varPsi _2 = \varPsi _1 \,\circ \, \varphi ^{-1}\). Note that the view of \(r_1\) in coordinate systems \(\varPsi _1\) and \(\varPsi _2\) are exactly the same, i.e., \(\mathcal {V}_{\varPsi _1} = \mathcal {V}_{\varPsi _2}\). Since \(\mathcal {A}\) is a deterministic algorithm, \(\mathcal {A}(\mathcal {V}_{\varPsi _1}) = \mathcal {A}(\mathcal {V}_{\varPsi _2})\). Since the elected leading Weber point in local coordinate system \(\varPsi _1\) is \(w_1\), we have \(\mathcal {A}(\mathcal {V}_{\varPsi _1}) = \varPsi _1(w_1)\). So we have,

$$\begin{aligned}&\mathcal {A}(\mathcal {V}_{\varPsi _2}) = \mathcal {A}(\mathcal {V}_{\varPsi _1}) = \varPsi _1(w_1)\\ \Rightarrow \quad&\varPsi _2^{-1}(\mathcal {A}(\mathcal {V}_{\varPsi _2})) = \varPsi _2^{-1}(\varPsi _1(w_1)) = \varphi \circ \varPsi _1^{-1} \circ \varPsi _1(w_1) = \varphi (w_1) = w_2 \end{aligned}$$

Hence, we see that in local coordinate system \(\varPsi _1\) the robot \(r_1\) elects \(w_1\) as the leading Weber point, while in \(\varPsi _2\) it elects \(w_2\). This is a contradiction.

Case 2: Now assume that \(\varphi (v_1) = v_2 \ne v_1\). Then there must be a robot \(r_2\) in \(v_2\). Suppose that the adversary sets the local coordinate system of \(r_2\) as \(\varPsi _2 = \varPsi _1 \circ \varphi ^{-1}\). Then the view of \(r_1\) and \(r_2\) will be identical, i.e., \(\mathcal {V}_{\varPsi _1} = \mathcal {V}_{\varPsi _2}\). Again we have, \(\mathcal {A}(\mathcal {V}_{\varPsi _2}) = \mathcal {A}(\mathcal {V}_{\varPsi _1}) = \varPsi _1(w_1)\) and hence, \(\varPsi _2^{-1}(\mathcal {A}(\mathcal {V}_{\varPsi _2})) = w_2\). Therefore, \(r_2\) will elect \(w_2\), while \(r_1\) elects \(w_1\) as the leading Weber point. This is again a contradiction.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bose, K., Kundu, M.K., Adhikary, R., Sau, B. (2019). Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2018. Lecture Notes in Computer Science(), vol 11410. Springer, Cham. https://doi.org/10.1007/978-3-030-14094-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14094-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14093-9

  • Online ISBN: 978-3-030-14094-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics