Skip to main content

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots from the Disk in the Face-to-Face Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11410))

Abstract

The problem of evacuating two robots from the disk in the face-to-face model was first introduced in [16], and extensively studied (along with many variations) ever since with respect to worst case analysis. We initiate the study of the same problem with respect to average case analysis, which is also equivalent to designing randomized algorithms for the problem. First we observe that algorithm \(\mathscr {B}_{2}\) of [16] with worst case cost \(\mathrm {Wrs}\left( \mathscr {B}_{2}\right) :=5.73906\) has average case cost \(\mathrm {Avg}\left( \mathscr {B}_{2}\right) :=5.1172\). Then we verify that none of the algorithms that induced worst case cost improvements in subsequent publications has better average case cost, hence concluding that our problem requires the invention of new algorithms. Then, we observe that a remarkable simple algorithm, \(\mathscr {B}_{1}\), has very small average case cost \(\mathrm {Avg}\left( \mathscr {B}_{1}\right) :=1+\pi \), but very high worst case cost \(\mathrm {Wrs}\left( \mathscr {B}_{1}\right) :=1+2\pi \). Motivated by the above, we introduce constrained optimization problem \(_2{\textsc {Evac}}_{F2F}^w\), in which one is trying to minimize the average case cost of the evacuation algorithm given that the worst case cost does not exceed w. The problem is of special interest with respect to practical applications, since a common objective in search-and-rescue operations is to minimize the average completion time, given that a certain worst case threshold is not exceeded, e.g. for safety or limited energy reasons.

Our main contribution is the design and analysis of families of new evacuation parameterized algorithms \(\mathscr {A}(p)\) which can solve \(_2{\textsc {Evac}}_{F2F}^w\), for every \(w \in [\mathrm {Wrs}\left( \mathscr {B}_{1}\right) ,\mathrm {Wrs}\left( \mathscr {B}_{2}\right) ]\). In particular, by letting parameter(s) p vary, we obtain parametric curve \(\left( \mathrm {Avg}\left( \mathscr {A}(p)\right) , \mathrm {Wrs}\left( \mathscr {A}(p)\right) \right) \) that induces a continuous and strictly decreasing function in the mean-worst case space, and whose endpoints are \(\left( \mathrm {Avg}\left( \mathscr {B}_{1}\right) , \mathrm {Wrs}\left( \mathscr {B}_{1}\right) \right) \), \(\left( \mathrm {Avg}\left( \mathscr {B}_{2}\right) , \mathrm {Wrs}\left( \mathscr {B}_{2}\right) \right) \). Notably, the worst case analysis of the problem, since it’s introduction, has been relying on technical numerical, computer-assisted, calculations, following tedious robots trajectories’ analysis. Part of our contribution is a novel systematic procedure, which, given any evacuation algorithm, can derive it’s worst and average case performance in a clean and unified way.

K. Georgiou—Research supported in part by NSERC Discovery Grant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahlswede, R., Wegener, I.: Search Problems. Wiley-Interscience, Hoboken (1987)

    MATH  Google Scholar 

  2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  Google Scholar 

  3. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32(1), 123–143 (2002)

    Article  MathSciNet  Google Scholar 

  4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer Academic Publishers (2002)

    Google Scholar 

  5. Alpern, S.: Ten open problems in rendezvous search. In: Alpern, S., Fokkink, R., Gąsieniec, L., Lindelauf, R., Subrahmanian, V. (eds.) Search Theory, pp. 223–230. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6825-7_14

    Chapter  MATH  Google Scholar 

  6. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  Google Scholar 

  7. Baumann, N., Skutella, M.: Earliest arrival flows with multiple sources. Math. Oper. Res. 34(2), 499–512 (2009)

    Article  MathSciNet  Google Scholar 

  8. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)

    Article  MathSciNet  Google Scholar 

  9. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)

    Article  Google Scholar 

  10. Benkoski, S., Monticino, M., Weisinger, J.: A survey of the search theory literature. Nav. Res. Logist. (NRL) 38(4), 469–494 (1991)

    Article  Google Scholar 

  11. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_10

    Chapter  Google Scholar 

  12. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Rob. 21(3), 376–386 (2005)

    Article  Google Scholar 

  13. Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14

    Chapter  Google Scholar 

  14. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics. Auton. Rob. 31(4), 299–316 (2011)

    Article  Google Scholar 

  15. Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. Theoret. Comput. Sci. 709, 20–30 (2018)

    Article  MathSciNet  Google Scholar 

  16. Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9

    Chapter  Google Scholar 

  17. Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0_10

    Chapter  Google Scholar 

  18. Czyzowicz, J., et al.: God save the queen. In: 9th International Conference on Fun with Algorithms (FUN 2018) (2018)

    Google Scholar 

  19. Czyzowicz, J., et al.: Priority evacuation from a disk using mobile robots. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 392–407. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01325-7_32

    Chapter  Google Scholar 

  20. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: 27th International Symposium on Algorithms and Computation, ISAAC 2016, Sydney, Australia, 12–14 December 2016, pp. 27:1–27:12 (2016)

    Google Scholar 

  21. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8_10

    Chapter  Google Scholar 

  22. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. In: FOCS, pp. 298–303. IEEE (1991)

    Google Scholar 

  23. Dobbie, J.: A survey of search theory. Oper. Res. 16(3), 525–537 (1968)

    Article  Google Scholar 

  24. Fekete, S., Gray, C., Kröller, A.: Evacuation of rectilinear polygons. In: Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17458-2_3

    Chapter  Google Scholar 

  25. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theoret. Comput. Sci. 399(3), 236–245 (2008)

    Article  MathSciNet  Google Scholar 

  26. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with one robot on a disk - (track: wireless and geometry). In: Chrobak, M., Fernández Anta, A., Gąsieniec, L., Klasing, R. (eds.) ALGOSENSORS 2016. LNCS, vol. 10050, pp. 80–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53058-1_6

    Chapter  Google Scholar 

  27. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a disk - wireless and face-to-face communication models. In: Liberatore, F., Parlier, G.H., Demange, M. (eds.) Proceedings of the 6th International Conference on Operations Research and Enterprise Systems, ICORES 2017, Porto, Portugal, 23–25 February 2017, pp. 15–26. SciTePress (2017)

    Google Scholar 

  28. Georgiou, K., Kranakis, E., Steau, A.: Searching with advice: robot fence-jumping. J. Inf. Process. 25, 559–571 (2017)

    Google Scholar 

  29. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comput. 31(2), 577–600 (2001)

    Article  MathSciNet  Google Scholar 

  30. Kleinberg, J.: On-line search in a simple polygon. In: SODA, p. 8. SIAM (1994)

    Google Scholar 

  31. Lidbetter, T.: Hide-and-seek and other search games. Ph.D. thesis, The London School of Ecoomics and Political Science (LSE) (2013)

    Google Scholar 

  32. Mitchell, J.S.B.: Geometric shortest paths and network optimization. Handb. Comput. Geom. 334, 633–702 (2000)

    Article  MathSciNet  Google Scholar 

  33. Nahin, P.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  34. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989. LNCS, vol. 372, pp. 610–620. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0035787

    Chapter  Google Scholar 

  35. Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)

    MATH  Google Scholar 

  36. Thrun, S.: A probabilistic on-line mapping algorithm for teams of mobile robots. Int. J. Rob. Res. 20(5), 335–363 (2001)

    Article  Google Scholar 

  37. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53. ACM (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Chuangpishit .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Observation 3

Proof

(Observation 3). Note that it takes time \(\pi \) to search the entire circle, and that the two trajectories are symmetric with respect to horizontal axis. Therefore, we may assume that the instance \(\mathrm {cycle}(x)\) satisfies \(x\in [0,\pi ]\).

Clearly, for any such x, we have that \(\mathcal {S}(x)=x\). By Lemma 2, we have that \(\mathcal {C}(x)=1+\mathcal {S}(x)+2\mathcal {E}(x) =1+x+2\delta _x\). Numerical calculations (software assisted) show that

$$\begin{aligned}&\mathrm {Wrs}\left( \mathscr {B}_{1}\right) = \sup _{x\in [0,\pi ]} \{ \mathcal {C}(x) \} = \sup _{x\in [0,\pi ]} \{ 1+x+2\delta _x \} \approx 5.73906, \\&\mathrm {Avg}\left( \mathscr {B}_{1}\right) = \mathrm {E}_{x\in [0,\pi ]}[\mathcal {C}(x)] =\frac{1}{\pi } \int _{x=0}^{\pi }\left( 1+x+2\delta _x \right) dx \approx 5.1172. \end{aligned}$$

   \(\square \)

1.2 A.2 Observation 4

Proof

(Observation 4). It is easy to see that for all \(x\in [0,2\pi )\) we have \(\bar{t}(x)=\mathcal {S}(x)=x\) and \(\mathcal {E}(x)=0\). Therefore \(\mathcal {C}(x)=1+x\), and hence

$$\begin{aligned}&\mathrm {Wrs}\left( \mathscr {B}_{2}\right) = \sup _{x\in [0,2\pi )} \{ \mathcal {C}(x) \} = 1+2\pi , \\&\mathrm {Avg}\left( \mathscr {B}_{2}\right) = \mathrm {E}_{x\in [0,2\pi )}[\mathcal {C}(x)] = \int _{x=0}^{2\pi }\left( 1+x\right) dx = 1+\pi . \end{aligned}$$

   \(\square \)

1.3 A.3 Lemma 4

Proof

(Lemma 4). First it is easy to show that the worst case evacuation time is induced either when \(\mathscr {R}_{1}\) finds the exit while moving from \(\mathrm {cycle}(0)\) to \(\mathrm {cycle}(\alpha )\), or while \(\mathscr {R}_{1}, \mathscr {R}_{2}\) are exploring the circle together (after having met). By Lemma 2, the cost in the first case would be

$$ \max _{0\le x \le \alpha }\{1+x+2\delta _x\} = \left\{ \begin{array}{ll} 1+\alpha +2\delta _\alpha , &{} \text {if}~\alpha \le \alpha _0 \\ \mathrm {Wrs}\left( \mathscr {B}_{1}\right) , &{} \text {otherwise} \end{array} \right. $$

where the values of the piecewise function above follow from Lemma 3. In the other case, the worst placement of exit is obtained using instances \(\mathrm {cycle}(\alpha +\epsilon )\) for arbitrary small values of \(\epsilon >0\) in which case the evacuation cost becomes \(1+2\pi -\alpha \).

Overall, is easy to see that \(1+\alpha _0 +2\delta _{\alpha _0} \le 1+2\pi -\alpha _0\) showing that the dominant evacuation cost when \(\alpha \le \bar{\alpha }\) is \(1+2\pi -\alpha \). For \(\alpha >\bar{\alpha }\) the evacuation cost becomes equal to \(w_{1}\).    \(\square \)

1.4 A.4 Lemma 5

Proof

(Lemma 5). We distinguish three cases as to where the exit is. If \(x\in [0,\alpha )\), then the worst instance \(\mathrm {cycle}(x)\) is when \(x=\alpha -\epsilon \) for arbitrarily small \(\epsilon >0\), and the cost is \(1+\alpha +2\delta _{\alpha /2}\). In the second case \(x \in [\alpha , 2\alpha +\delta _{\alpha /2})\) and it is not difficult to see that the worst case induced cost in this case is not more than that of the first case. Finally, in the third case \(x\in [ 2\alpha +\delta _{\alpha /2}, 2\pi )\), and the two robots move together, so the total cost, in the worst case, is \(1+2\pi -\alpha \), when \(x=2\pi -\epsilon \) for arbitrarily small \(\epsilon >0\). It is not difficult to see that the dominant case is actually the third one, and in fact the two cases induce the same cost when \(\pi =\alpha +\delta _{\alpha /2}\). By the definition of \(\delta _{\alpha /2}\) we know that \(\delta _{\alpha /2}=2\sin \left( {\frac{\alpha +\delta _{\alpha /2}}{2}}\right) =2\sin \left( {\pi /2}\right) =2\). Hence the costs become equal when \(\alpha =\pi -2\).    \(\square \)

1.5 A.5 Lemma 6

Proof

(Lemma 6). Let \(w(\beta ) = 1+\pi - \beta /2+2\cos \left( {\beta /4}\right) \). First we show that \(w(\beta )\) is the worst case performance of \(\mathscr {A}_{2}'(\alpha _\beta , \beta )\) for two specific placements of the exit.

We proceed by describing evacuation cost \(\mathcal {C}(x)\) assuming two arbitrary \(\alpha ,\beta \) for two different instances \(\mathrm {cycle}(x)\). Using Lemma 2, we see that

$$\begin{aligned} \lim _{\epsilon \rightarrow 0^+} \mathcal {C}(\alpha -\epsilon ) = 1+ \lim _{\epsilon \rightarrow 0^+} \mathcal {S}(\alpha -\epsilon ) +2\lim _{\epsilon \rightarrow 0^+} \mathcal {E}(\alpha -\epsilon ) = 1+\alpha +2\delta _{\alpha /2}. \end{aligned}$$
(3)

Since the total search time is \(2\pi -\alpha -\beta \), we also see that

$$\begin{aligned} \lim _{\epsilon \rightarrow 0^+} \mathcal {C}(2\pi -\epsilon )=1+2\pi -\alpha -\beta . \end{aligned}$$
(4)

Now we claim that (3), (4) are equal when \(\alpha =\alpha _\beta \). Indeed, equating (3), (4) gives

$$\begin{aligned} a+\delta _{\alpha /2}=\pi -\beta /2. \end{aligned}$$
(5)

But then, using (2), we see that

$$\begin{aligned} \delta _{\alpha /2}=2\sin \left( {\frac{\alpha +\delta _{\alpha /2}}{2}}\right) =2\sin \left( {\frac{\pi -\beta /2}{2}}\right) =2\cos \left( {\beta /4}\right) . \end{aligned}$$
(6)

Substituting (6) into (5), we see that the value of \(\alpha \) for which (3), (4) are equal satisfies \(\alpha = \pi - \beta /2 - 2\cos \left( {\beta /4}\right) \), as promised. Substituting this special value of \(\alpha =\alpha _\beta \) either in (3) or in (4) induces evacuation cost \(w(\beta )=1+\pi - \beta /2+2\cos \left( {\beta /4}\right) \).

Next we show that as long as \(\beta \) is not too big, \(w(\beta )\) is indeed the worst case evacuation cost. We consider the following cases \(x\in I_i\), \(i=1,\ldots ,4\) for possible instances \(\mathrm {cycle}(x)\); \(I_1:=[0,\alpha ), I_2:=[\alpha , 2\alpha +\beta +\delta _{(\alpha +\beta )/2}), I_3:=[2\alpha +\beta +\delta _{(\alpha +\beta )/2}, 2\alpha +2\beta +\delta _{(\alpha +\beta )/2}+\delta _{\beta /2}), I_4:=[2\alpha +2\beta +\delta _{(\alpha +\beta )/2}+\delta _{\beta /2}, 2\pi ). \) Clearly, (3), (4) demonstrate the worst case evacuation costs for instances in \(I_1, I_4\), respectively, and the cost in both cases, for \(\alpha =\alpha _\beta \) is equal to \(w(\beta )\).

If \(x\in I_2\) then \(\mathcal {C}(x)=1+\mathcal {S}(x)+2\mathcal {E}(x)\). It is easy to see that both \(\mathcal {S}(x), \mathcal {E}(x)\) are monotone in \(I_2\), so the worst case evacuation in this case is

$$\begin{aligned} \lim _{\epsilon \rightarrow 0^+} \mathcal {C}(2\alpha _\beta +\beta +\delta _{(\alpha _\beta +\beta )/2}-\epsilon )= 1+\alpha _\beta +\beta +\delta _{(\alpha _\beta +\beta )/2}+2\delta _{\beta /2}. \end{aligned}$$
(7)

Denote \(\delta _{\beta /2}\) satisfying (2) by \(\delta _\beta '\). Using (2) and the definition of \(\alpha _\beta \), we see that

$$ \delta _{(\alpha _\beta +\beta )/2} =2\sin \left( {\frac{\alpha _\beta +\beta +\delta _{(\alpha _\beta +\beta )/2}}{2}}\right) = 2\cos \left( {\cos \left( {\beta /4}\right) - \beta /4- \delta _{(\alpha _\beta +\beta )/2}}\right) $$

For simplicity, we denote \(\delta _{(\alpha _\beta +\beta )/2}\) that satisfies the equation above by \(\delta _\beta ''\). Then, continuing from (7), the worst case evacuation cost when \(x\in I_2\) becomes \(1+\pi +\beta /2-2\cos \left( {\beta /4}\right) +\delta _\beta ''+2\delta _\beta '\), an expression that depends exclusively on \(\beta \). The latter cost is no more than \(w(\beta )\) if and only if \(4\cos \left( {\beta /4}\right) -\beta -\delta _\beta ''-2\delta _\beta ' \ge 0\), and numerically we verify that this is satisfied as long as \(\beta \le \beta _0\) (see also Fig. 5).

Fig. 5.
figure 5

The behavior of expression \(4\cos \left( {\beta /4}\right) -\beta -\delta _\beta ''-2\delta _\beta '\), for \(\beta =0,\ldots , 0.8\).

Finally, it is easy to verify that \(\delta _{\beta /2}\) and \(|I_4|\) are increasing and decreasing respectively for \(\beta \le \beta _0\) and that \(\delta _{\beta _0/2}=0.977997\le 1.01099 = |I_4|\) (for \(\beta =\beta _0\)). As a result, the worst case evacuation cost of case \(x\in I_3\) cannot exceed that of case \(x\in I_4\), and hence the lemma follows.    \(\square \)

1.6 A.6 Theorem 6

Proof

(Theorem 6). The claims for the worst case performances of \(\mathscr {A}_1, \mathscr {A}_2', \mathscr {A}_2\) follow directly from Lemmata 46 and 5, respectively. Next we argue that as the parameters vary in their specified range, we obtain the entire spectrum of \(w\in [w_1,w_2]\), and this for unique values of the parameters. For this, we will rely on that for all evacuation algorithm families, the worst case cost is monotone in the parameters.

First, we argue about \(\mathscr {A}_1\). We observe that by the definition of \(\bar{\alpha }\), \(\mathrm {Wrs}\left( \mathscr {A}_1(\bar{\alpha })\right) =w_1\), and \(\mathrm {Wrs}\left( \mathscr {A}_1(1)\right) =1+2\pi -1=2\pi \). Together with the fact that \(v(\alpha )\) is strictly decreasing, we see that \(\mathrm {Wrs}\left( \mathscr {A}_1(\alpha )\right) \) is 1-1 and onto to \([w_1,2\pi ]\) as \(\alpha \) ranges in \([1, \bar{\alpha }]\).

Second, we study \(\mathscr {A}_2'\) whose worst case cost \(v_2(\beta )\) is strictly decreasing in \(\beta \). Moreover, by definition of \(\beta _0\), we have \(\mathrm {Wrs}\left( \mathscr {A}_2(\alpha _{\beta _0},\beta _0)\right) =w_0\). Then we note that for \(\beta = 0\), \(\mathscr {A}_2(\alpha _\beta ,\beta )\) coincides with \(\mathscr {A}_2(\pi -2)\), and in particular the induced worst case cost becomes \(3+\pi \). Therefore \(\mathrm {Wrs}\left( \mathscr {A}_2'(\alpha _\beta ,\beta )\right) \) is 1-1 and onto to \([w_0,3+\pi ]\) as \(\beta \) ranges in \([0, \beta _0]\).

Third, we study \(\mathscr {A}_2\), for which we know that \(\mathrm {Wrs}\left( \mathscr {A}_2(\pi -2)\right) =3+\pi \). Again, the worst case cost is monotone in \(\alpha \) and \(\mathscr {A}_2(0)\) coincides with benchmark algorithm \(\mathscr {B}_{2}\), that is \(\mathrm {Wrs}\left( \mathscr {A}_2(0)\right) =w_2\). Hence, \(\mathrm {Wrs}\left( \mathscr {A}_2(\alpha )\right) \) is 1-1 and onto to \([3+\pi ,w_2]\) as \(\alpha \) ranges in \([0,\pi -2]\).

Finally, we argue that

$$\begin{aligned} \mathrm {Avg}\left( \mathscr {A}_{1}(\alpha )\right) \le u_1(\alpha ),&\forall \alpha \in [1, \bar{\alpha }]\\ \mathrm {Avg}\left( \mathscr {A}_{2}'(\alpha _\beta ,\beta )\right) \le u_2'(\beta ),&\forall \beta \in [0, \beta _0]\\ \mathrm {Avg}\left( \mathscr {A}_{2}(\alpha )\right) \le u_2(\alpha ),&\forall \alpha \in [0, \pi -2] \end{aligned}$$

For this, we numerically compute \(\mathrm {Avg}\left( \mathscr {A}_{1}(\alpha )\right) , \mathrm {Avg}\left( \mathscr {A}_{2}'(\alpha _\beta ,\beta )\right) , \mathrm {Avg}\left( \mathscr {A}_{2}(\alpha )\right) \) for various values of parameters \(\alpha ,\beta \), and we heuristically choose \(u_1, u_2',u_2\) so as to upper bound the average case performance of \(\mathscr {A}_1, \mathscr {A}_2', \mathscr {A}_2\), effectively verifying our claim numerically. For each evacuation algorithm, we utilize Corollary 1, which together with the analytic description of our evacuation algorithms (see Definitions 46, and 5) allow us to compute their average case performance using computer-assisted calculations. Our numerical calculations are depicted in Fig. 6.

Fig. 6.
figure 6

On the right \(u_1(\alpha )-\mathrm {Avg}\left( \mathscr {A}_{1}(\alpha )\right) \), for \(\alpha '\le \alpha \le \bar{\alpha }\). In the middle, \(u_2'(\beta )-\mathrm {Avg}\left( \mathscr {A}_{2}'(\alpha _\beta , \beta )\right) \), for \(0\le \beta \le \beta _0\). On the right \(u_2(\alpha )-\mathrm {Avg}\left( \mathscr {A}_{2}(\alpha )\right) \), for \(0\le \alpha \le \pi -2\).

   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chuangpishit, H., Georgiou, K., Sharma, P. (2019). Average Case - Worst Case Tradeoffs for Evacuating 2 Robots from the Disk in the Face-to-Face Model. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2018. Lecture Notes in Computer Science(), vol 11410. Springer, Cham. https://doi.org/10.1007/978-3-030-14094-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14094-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14093-9

  • Online ISBN: 978-3-030-14094-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics