Advertisement

Average Curve of n Digital Curves

  • Isabelle SivignonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)

Abstract

Building on [23], we investigate the problem of defining and computing the average of digital curves. Given n digital curves that satisfy compatibility conditions, a set - called the gap - in which the average curve is looked for, is defined. The proposed definition rewrites the classical arithmetic mean for curves by (i) defining the distance between each point of the gap and its projection on each curve and (ii) computing the points that minimize the sum of squared deviations. We show that, algorithmically speaking, computing such projections comes down to computing a distance transform with visibility constraints. We propose a fast algorithm to compute a good approximation of these distance maps and finally show that the average curve can be obtained using classical watershed algorithm.

Keywords

Digital curves Arithmetic mean Distance transform Visibility 

References

  1. 1.
    DGtal: Digital Geometry Tools and Algorithms Library. http://dgtal.org
  2. 2.
    Alvarez, L., Baumela, L., Márquez-Neila, P., Henríquez, P.: A real time morphological snakes algorithm. Image Process. Line 2, 1–7 (2012)CrossRefGoogle Scholar
  3. 3.
    Boukhriss, I., Miguet, S., Tougne, L.: Discrete average of two-dimensional shapes. In: Gagalowicz, A., Philips, W. (eds.) CAIP 2005. LNCS, vol. 3691, pp. 145–152. Springer, Heidelberg (2005).  https://doi.org/10.1007/11556121_19CrossRefGoogle Scholar
  4. 4.
    Breen, D.E., Mauch, S., Whitaker, R.T.: 3D scan conversion of CSG models into distance volumes. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization, pp. 7–14. ACM (1998)Google Scholar
  5. 5.
    Buchin, K., et al.: Median trajectories. Algorithmica 66(3), 595–614 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Coeurjolly, D., Miguet, S., Tougne, L.: 2D and 3D visibility in discrete geometry: an application to discrete geodesic paths. Pattern Recognit. Lett. 25(5), 561–570 (2004)CrossRefGoogle Scholar
  7. 7.
    Coeurjolly, D.: 2D subquadratic separable distance transformation for path-based norms. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 75–87. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09955-2_7CrossRefzbMATHGoogle Scholar
  8. 8.
    Coeurjolly, D., Montanvert, A.: Optimal separable algorithms to compute the reverse euclidean distance transformation and discrete medial axis in arbitrary dimension. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 437–448 (2007)CrossRefGoogle Scholar
  9. 9.
    Couprie, M., Bertrand, G.: Topological gray-scale watershed transformation (1997)Google Scholar
  10. 10.
    Couprie, M., Coeurjolly, D., Zrour, R.: Discrete bisector function and Euclidean skeleton in 2D and 3D. Image Vis. Comput. 25(10), 1543–1556 (2007)CrossRefGoogle Scholar
  11. 11.
    Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. J. Math. Imaging Vis. 22(2), 231–249 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Danielsson, P.E.: Euclidean distance mapping. Comput. Graph. Image Process. 14, 227–248 (1980)CrossRefGoogle Scholar
  13. 13.
    Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of digital curves. Int. J. Pattern Recognit. Artif. Intell. 09(4), 635–662 (1995)CrossRefGoogle Scholar
  14. 14.
    Eberly, D.: Ridges in Image and Data Analysis. Springer, Heidelberg (1996).  https://doi.org/10.1007/978-94-015-8765-5CrossRefzbMATHGoogle Scholar
  15. 15.
    Chazal, F., Lieutier, A., Rossignac, J.: Normal-map between normal-compatible manifolds. Int. J. Comput. Geom. Appl. 17(5), 403–421 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational Geometry. CRC Press Inc., Boca Raton (1997)zbMATHGoogle Scholar
  17. 17.
    Jones, M.W., Baerentzen, J.A., Sramek, M.: 3D distance fields: a survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12(4), 581–599 (2006)CrossRefGoogle Scholar
  18. 18.
    Legland, D., Arganda-Carreras, I.: ImageJ-MorphoLibJ. http://imagej.net/MorphoLibJ
  19. 19.
    Nutanong, S., Tanin, E., Zhang, R.: Incremental evaluation of visible nearest neighbor queries. IEEE Trans. Knowl. Data Eng. 22(5), 665–681 (2010)CrossRefGoogle Scholar
  20. 20.
    O’Rourke, J.: An on-line algorithm for fitting straight lines between data ranges. Commun. ACM 24(9), 574–578 (1981)CrossRefGoogle Scholar
  21. 21.
    Peikert, R., Sadlo, F.: Height ridge computation and filtering for visualization. In: 2008 IEEE Pacific Visualization Symposium, pp. 119–126 (2008)Google Scholar
  22. 22.
    Prasad, D.K., Leung, M.K.H., Quek, C., Brown, M.S.: DEB: definite error bounded tangent estimator for digital curves. IEEE Trans. Image Process. 23(10), 4297–4310 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sati, M., Rossignac, J., Seidel, R., Wyvill, B., Musuvathy, S.: Average curve of n smooth planar curves. Comput.-Aided Design 70, 46–55 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Soille, P., Vincent, L.: Determining watersheds in digital pictures via flooding simulations (1990)Google Scholar
  26. 26.
    de Vieilleville, F., Lachaud, J.O.: Comparison and improvement of tangent estimators on digital curves. Pattern Recognit. 42(8), 1693–1707 (2009). Advances in Combinatorial Image AnalysisCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-LabGrenobleFrance

Personalised recommendations