Unfolding Level 1 Menger Polycubes of Arbitrary Size With Help of Outer Faces

  • Lydie RichaumeEmail author
  • Eric Andres
  • Gaëlle Largeteau-Skapin
  • Rita Zrour
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)


In this article, we suggest a grid-unfolding of level 1 Menger polycubes of arbitrary size with L holes along the x-axis, M the y-axis and N the z-axis. These polycubes can have a high genus, and most vertices are of degree 6. The unfolding is based mainly on the inner faces (that do not lie on the outer most envelope) except for some outer faces that are needed to connect lines or planes in the object. It is worth noticing that this grid-unfolding algorithm is deterministic and without refinement.


Polycube Orthogonal polyhedra Unfolding High genus object 


  1. 1.
    Aloupis, G., et al.: Common unfoldings of polyominoes and polycubes. In: Akiyama, J., Bo, J., Kano, M., Tan, X. (eds.) CGGA 2010. LNCS, vol. 7033, pp. 44–54. Springer, Heidelberg (2011). Scholar
  2. 2.
    Biedl, T., et al.: Unfolding some classes of orthogonal polyhedra. In: Proceedings of 10th Canadian Conference on Computer Geometry, January 1998Google Scholar
  3. 3.
    Chang, Y.-J., Yen, H.-C.: Unfolding orthogonal polyhedra with linear refinement. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 415–425. Springer, Heidelberg (2015). Scholar
  4. 4.
    Chang, Y.-J., Yen, H.-C.: Improved algorithms for grid-unfolding orthogonal polyhedra. Int. J. Comput. Geom. Appl. 27(01n02), 33–56 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Damian, M., Demaine, E., Flatland, R., O’Rourke, J.: Unfolding genus-2 orthogonal polyhedra with linear refinement. Graphs and Combinatorics 33(5), 1357–1379 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Damian, M., Flatland, R., Meijer, H., O’rourke, J.: Unfolding well-separated orthotrees. In: 15th Annual Fall Workshop Computer Geometry, pp. 23–25. Citeseer (2005)Google Scholar
  7. 7.
    Damian, M., Flatland, R., O’Rourke, J.: Unfolding manhattan towers. Comput. Geom. 40(2), 102–114 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Demaine, E.D., O’Rourke, J.: A survey of folding and unfolding in computational geometry. Combinatorial Comput. Geom. 52, 167–211 (2005)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Ho, K.-Y., Chang, Y.-J., Yen, H.-C.: Unfolding some classes of orthogonal polyhedra of arbitrary genus. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 275–286. Springer, Cham (2017). Scholar
  10. 10.
    Liou, M.-H., Poon, S.-H., Wei, Y.-J.: On edge-unfolding one-layer lattice polyhedra with cubic holes. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 251–262. Springer, Cham (2014). Scholar
  11. 11.
    Menger, K.: Dimensionstheorie. Springer, Heidelberg (1928). Scholar
  12. 12.
    Mitani, J., Suzuki, H.: Making papercraft toys from meshes using strip-based approximate unfolding. ACM Trans. Graph. (TOG) 23(3), 259–263 (2004)CrossRefGoogle Scholar
  13. 13.
    O’Rourke, J.: Unfolding orthogonal terrains. arXiv preprint arXiv:0707.0610 (2007)
  14. 14.
    O’Rourke, J.: Folding and unfolding in computational geometry. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 258–266. Springer, Heidelberg (2000). Scholar
  15. 15.
    Richaume, L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Unfolding H-convex Manhattan Towers. HAL preprint, December 2018.
  16. 16.
    Wang, C.-H.: Manufacturability-driven decomposition of sheet metal products. Ph.D. thesis, Carnegie Mellon University (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lydie Richaume
    • 1
    Email author
  • Eric Andres
    • 1
  • Gaëlle Largeteau-Skapin
    • 1
  • Rita Zrour
    • 1
  1. 1.Laboratory XLIM, ASALI, UMR CNRS 7252, University of Poitiers, H1, Tel. 2, Bld. Marie et Pierre CurieFuturoscope-Chasseneuil CedexFrance

Personalised recommendations