Advertisement

Polygon Approximations of the Euclidean Circles on the Square Grid by Broadcasting Sequences

  • Haomin Song
  • Igor PotapovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)

Abstract

Euclidean circle approximation on the square grid is an important problem in digital geometry. Recently several schemes have been proposed for approximation of Euclidean circles based on Neighbourhood Sequences, which correspond to repeated application of the von Neumann and Moore neighbourhoods on a square grid. In this paper we study polygon approximations of the Euclidean circles on the square grid with Broadcasting Sequences which can be seen as a generalization of Neighbourhood Sequences. The polygons generated by Broadcasting Sequences are the Minkowski sums of digital disks defined by a given set of broadcasting radii. We propose a polynomial time algorithm that can generate Broadcasting Sequences which are providing flexible and accurate approximation of Euclidean circles.

References

  1. 1.
    Worring, M., Smeulders, A.W.M.: Digitized circular arcs: characterization and parameter estimation. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 587–598 (1995)CrossRefGoogle Scholar
  2. 2.
    Nagy, B., Strand, R.: Approximating Euclidean circles by neighbourhood sequences in a hexagonal grid. Theor. Comput. Sci. 412(15), 1364–1377 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mukherjee, J.: On approximating Euclidean metrics by weighted t-cost distances in arbitrary dimension. Pattern Recogn. Lett. 32, 824–831 (2011)CrossRefGoogle Scholar
  4. 4.
    Debledrennesson, I., Tabbone, S., Wendling, L.: Fast polygonal approximation of digital curves. In: ICPR 2004, vol. 1, pp. 465–468 (2004)Google Scholar
  5. 5.
    Bhowmick, P., Bhattacharya, B.B.: Approximation of digital circles by regular polygons. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3686, pp. 257–267. Springer, Heidelberg (2005).  https://doi.org/10.1007/11551188_28CrossRefGoogle Scholar
  6. 6.
    Das, P.P., Chakrabarti, P.P., Chatterji, B.N.: Distance functions in digital geometry. Inf. Sci. 42(2), 113–136 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Das, P.P., Chatterji, B.N.: Octagonal distances for digital pictures. Inf. Sci. 50(2), 123–150 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Nagy, B., Strand, R., Normand, N.: Distance functions based on multiple types of weighted steps combined with neighborhood sequences. J. Math. Imaging Vis. 60, 1209–1219 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mir-Mohammad-Sadeghi, H., Nagy, B.: On the chamfer polygons on the triangular grid. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 53–65. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59108-7_5CrossRefGoogle Scholar
  10. 10.
    Farkas, J., Bajak, S., Nagy, B.: Approximating the Euclidean circle in the square grid using neighbourhood sequences. Pure Math. Appl. 17(3–4), 309–322 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Nickson, T., Potapov, I.: Broadcasting automata and patterns on Z\(^2\). In: Adamatzky, A. (ed.) Automata, Universality, Computation. ECC, vol. 12, pp. 297–340. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-09039-9_14CrossRefzbMATHGoogle Scholar
  12. 12.
    Martin, R., Nickson, T., Potapov, I.: Geometric computations by broadcasting automata. Nat. Comput.: Int. J. 11, 623–635 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Efrima, A., Peleg, D.: Distributed algorithms for partitioning a swarm of autonomous mobile robots. Theor. Comput. Sci. 410, 1355–1368 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Klette, R., Rosenfeld, A.: Digital straightness-a review. Discrete Appl. Math. 139(1), 197–230 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kozen, D.C.: Automata and Computability. Springer, New York (1997).  https://doi.org/10.1007/978-1-4612-1844-9CrossRefzbMATHGoogle Scholar
  16. 16.
    Chen, D., Plemmons, R.J.: Nonnegativity constraints in numerical analysis. In: Symposium on the Birth of Numerical Analysis, pp. 109–139 (2009)CrossRefGoogle Scholar
  17. 17.
    Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall/SIAM, Englewood Cliffs/Philadelphia (1995)CrossRefGoogle Scholar
  18. 18.
    Shure, L.: Brief history of nonnegative least squares in MATLAB (2006). http://blogs.mathworks.com/loren/2006/
  19. 19.
    Ferreira, O.: Local convergence of Newton’s method under majorant condition. J. Comput. Appl. Math. 235(5), 1515–1522 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Batra, P.: Newton’s method and the computational complexity of the fundamental theorem of algebra. Electron. Notes Theor. Comput. Sci. 202, 201–218 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of LiverpoolLiverpoolUK

Personalised recommendations