Advertisement

Compact Packings of the Plane with Three Sizes of Discs

  • Thomas FerniqueEmail author
  • Amir Hashemi
  • Olga Sizova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)

Abstract

A compact packing is a set of non-overlapping discs where all the holes between discs are curvilinear triangles. There is only one compact packing by discs of radius 1. There are exactly 9 values of r which allow a compact packing with discs of radius 1 and r. It has been proven that at most 11462 pairs (rs) allow a compact packing with discs of radius 1, r and s. We prove that there are exactly 164 such pairs.

Keywords

Compact packing Disc packing Tiling 

References

  1. 1.
    Blind, G.: Über Unterdeckungen der Ebene durch Kreise. J. reine angew. Math. 236, 145–173 (1969)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185. Springer, New York (2005).  https://doi.org/10.1007/b138611CrossRefzbMATHGoogle Scholar
  3. 3.
    Fejes Tóth, L.: Über die dichteste Kugellagerung. Math. Z. 48, 676–684 (1943)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fejes Tóth, L.: Regular Figures. Pergamon Press, Oxford (1964)zbMATHGoogle Scholar
  5. 5.
    Fernique, Th., Hashemi, A., Sizova, O.: Empilements compacts avec trois tailles de disque. arxiv:1808.10677 (2018)
  6. 6.
    Florian, A.: Ausfüllung der Ebene durch Kreise. Rend. Circ. Mat. Palermo 9, 300–312 (1960)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Heppes, A.: On the densest packing of discs of radius \(1\) and \(\sqrt{2}-1\). Stud. Sci. Math. Hung. 36, 433–454 (2000)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Heppes, A.: Some densest two-size disc packings in the plane. Discrete Compuat. Geom. 30, 241–262 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kennedy, T.: Compact packings of the plane with two sizes of discs. Discrete Comput. Geom. 35, 255–267 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kennedy, T.: A densest compact planar packing with two sizes of discs. arxiv:0412418 (2004)
  11. 11.
    Likos, C.N., Henley, C.L.: Complex alloy phases for binary hard-disc mixtures. Philos. Mag. B 68, 85–113 (1993)CrossRefGoogle Scholar
  12. 12.
    Messerschmidt, M.: On compact packings of the plane with circles of three radii. arxiv:1709.03487 (2017)
  13. 13.
    Robinson, R.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)MathSciNetCrossRefGoogle Scholar
  14. 14.
    The Sage Developers: SageMath, the Sage Mathematics Software System (Version 7.4) (2016). http://www.sagemath.org
  15. 15.
    Zimmerman, P., et al.: Calcul Mathématique avec Sage. CreateSpace Independent Publishing Platform (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Univ. Paris 13, CNRS, Sorbonne Paris Cité, UMR 7030VilletaneuseFrance
  2. 2.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran
  3. 3.Faculty of MathematicsHigher School of EconomicsMoscowRussia
  4. 4.Semenov Institute of Chemical PhysicsMoscowRussia

Personalised recommendations