Advertisement

Convex and Concave Vertices on a Simple Closed Curve in the Triangular Grid

  • Lidija ČomićEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)

Abstract

We propose a classification of convex and concave vertices on a simple closed curve in the triangular grid into two types, based on the angle turn the curve makes at the vertex. We prove a combinatorial property for the number of convex and concave vertices of different types.

Keywords

Digital topology Triangular grid Convex and concave vertices Salient and reentrant vertices Simple closed curve 

Notes

Acknowledgement

We thank the reviewers for reading the paper carefully, spotting some gaps in the first version of the proof and making constructive suggestions. This work has been partially supported by the Ministry of Education and Science of the Republic of Serbia within the Project No. 34014.

References

  1. 1.
    Bell, S.B.M., Holroyd, F.C., Mason, D.C.: A digital geometry for hexagonal pixels. Image Vis. Comput. 7(3), 194–204 (1989)CrossRefGoogle Scholar
  2. 2.
    Borgefors, G.: Distance transformations on hexagonal grids. Pattern Recogn. Lett. 9(2), 97–105 (1989)CrossRefGoogle Scholar
  3. 3.
    Borgefors, G., Sanniti di Baja, G.: Skeletonizing the distance transform on the hexagonal grid. In: 9th International Conference on Pattern Recognition, ICPR, pp. 504–507 (1988)Google Scholar
  4. 4.
    Bribiesca, E.: A new chain code. Pattern Recogn. 32(2), 235–251 (1999)CrossRefGoogle Scholar
  5. 5.
    Brimkov, V.E., Barneva, R.P.: Analytical honeycomb geometry for raster and volume graphics. Comput. J. 48, 180–199 (2005)CrossRefGoogle Scholar
  6. 6.
    Brimkov, V.E., Maimone, A., Nordo, G.: Counting gaps in binary pictures. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 16–24. Springer, Heidelberg (2006).  https://doi.org/10.1007/11774938_2CrossRefGoogle Scholar
  7. 7.
    Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R.P., Klette, R.: The number of gaps in binary pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 35–42. Springer, Heidelberg (2005).  https://doi.org/10.1007/11595755_5CrossRefGoogle Scholar
  8. 8.
    Brlek, S., Labelle, G., Lacasse, A.: A note on a result of Daurat and Nivat. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 189–198. Springer, Heidelberg (2005).  https://doi.org/10.1007/11505877_17CrossRefzbMATHGoogle Scholar
  9. 9.
    Brlek, S., Labelle, G., Lacasse, A.: Properties of the contour path of discrete sets. Int. J. Found. Comput. Sci. 17(3), 543–556 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Brlek, S., Provençal, X., Fedou, J.: On the tiling by translation problem. Discrete Appl. Math. 157(3), 464–475 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Čomić, L.: Gaps and well-composed objects in the triangular grid. In: Marfil, R., Calderón, M., Díaz del Río, F., Real, P., Bandera, A. (eds.) CTIC 2019. LNCS, vol. 11382, pp. 54–67. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-10828-1_5CrossRefGoogle Scholar
  12. 12.
    Daurat, A., Nivat, M.: Salient and reentrant points of discrete sets. Electron. Notes Discrete Math. 12, 208–219 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Daurat, A., Nivat, M.: Salient and reentrant points of discrete sets. Discrete Appl. Math. 151(1–3), 106–121 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Deutsch, E.S.: On parallel operations on hexagonal arrays. IEEE Trans. Comput. 19(10), 982–983 (1970)CrossRefGoogle Scholar
  15. 15.
    Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal, and triangular arrays. Commun. ACM 15(9), 827–837 (1972)CrossRefGoogle Scholar
  16. 16.
    Dutt, M., Andres, E., Largeteau-Skapin, G.: Characterization and generation of straight line segments on triangular cell grid. Pattern Recogn. Lett. 103, 68–74 (2018)CrossRefGoogle Scholar
  17. 17.
    Dutt, M., Biswas, A., Nagy, B.: Number of shortest paths in triangular grid for 1- and 2-neighborhoods. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 115–124. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26145-4_9CrossRefGoogle Scholar
  18. 18.
    Evako, A.V., Kopperman, R., Mukhin, Y.V.: Dimensional properties of graphs and digital spaces. J. Math. Imaging Vis. 6(2–3), 109–119 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Freeman, H.: Computer processing of line-drawing images. ACM Comput. Surv. 6(1), 57–97 (1974)CrossRefGoogle Scholar
  20. 20.
    Freeman, H.: Algorithm for generating a digital straight line on a triangular grid. IEEE Trans. Comput. 28(2), 150–152 (1979)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Golay, M.J.E.: Hexagonal parallel pattern transformations. IEEE Trans. Comput. 18(8), 733–740 (1969)CrossRefGoogle Scholar
  22. 22.
    Gray, S.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 20, 551–561 (1971)CrossRefGoogle Scholar
  23. 23.
    Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image Process. 4(9), 1213–1222 (1995)CrossRefGoogle Scholar
  24. 24.
    Kardos, P., Palágyi, K.: Topology preservation on the triangular grid. Ann. Math. Artif. Intell. 75(1–2), 53–68 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kardos, P., Palágyi, K.: On topology preservation of mixed operators in triangular, square, and hexagonal grids. Discrete Appl. Math. 216, 441–448 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Klette, R., Rosenfeld, A.: Digital Geometry. Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers, San Francisco, Amsterdam (2004)zbMATHGoogle Scholar
  27. 27.
    Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)CrossRefGoogle Scholar
  28. 28.
    Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids. Ann. Math. Artif. Intell. 75(1–2), 117–134 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Nagy, B., Lukić, T.: Dense projection tomography on the triangular tiling. Fundam. Inform. 145(2), 125–141 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Nagy, B., Strand, R.: Approximating Euclidean circles by neighbourhood sequences in a hexagonal grid. Theor. Comput. Sci. 412(15), 1364–1377 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Sarkar, A., Biswas, A., Dutt, M., Bhowmick, P., Bhattacharya, B.B.: A linear-time algorithm to compute the triangular hull of a digital object. Discrete Appl. Math. 216, 408–423 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sarkar, A., Biswas, A., Dutt, M., Mondal, S.: Finding shortest triangular path and its family inside a digital object. Fundam. Inform. 159(3), 297–325 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Sossa-Azuela, J.H., Cuevas-Jiménez, E.V., Zaldivar-Navarro, D.: Computation of the Euler number of a binary image composed of hexagonal cells. J. Appl. Res. Technol. 8, 340–350 (2010)Google Scholar
  34. 34.
    Wiederhold, P., Morales, S.: Thinning on quadratic, triangular, and hexagonal cell complexes. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 13–25. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78275-9_2CrossRefGoogle Scholar
  35. 35.
    Yip, B., Klette, R.: Angle counts for isothetic polygons and polyhedra. Pattern Recogn. Lett. 24(9–10), 1275–1278 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations