Advertisement

Digital Plane Recognition with Fewer Probes

  • Tristan RoussillonEmail author
  • Jacques-Olivier Lachaud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)

Abstract

We present a new plane-probing algorithm, i.e., an algorithm that computes the normal vector of a digital plane from a starting point and a predicate “Is a point \(\varvec{x}\) in the digital plane?”. This predicate is used to probe the digital plane as locally as possible and decide on-the-fly the next points to consider. We show that this algorithm returns the same vector as another plane-probing algorithm proposed in Lachaud et al. (J. Math. Imaging Vis., 59, 1, 23–39, 2017), but requires fewer probes. The theoretical upper bound is indeed lowered from \(O(\omega \log \omega )\) to \(O(\omega )\) calls to the predicate, where \(\omega \) is the arithmetical thickness of the digital plane, and far fewer calls are experimentally observed on average. This reduction is made possible by a study that shows how to avoid computations that do not contribute to the final solution. In the context of digital surface analysis, this new algorithm is expected to be of great interest for normal estimation and shape reconstruction.

Keywords

Digital plane recognition Normal estimation Plane-probing algorithm 

References

  1. 1.
    Buzer, L.: A linear incremental algorithm for naive and standard digital lines and planes recognition. Graph. Models 65(1–3), 61–76 (2003)CrossRefGoogle Scholar
  2. 2.
    Charrier, E., Buzer, L.: An efficient and quasi linear worst-case time algorithm for digital plane recognition. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 346–357. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79126-3_31CrossRefzbMATHGoogle Scholar
  3. 3.
    Charrier, E., Lachaud, J.-O.: Maximal planes and multiscale tangential cover of 3D digital objects. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 132–143. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21073-0_14CrossRefGoogle Scholar
  4. 4.
    Debled-Rennesson, I., Reveillès, J.: An incremental algorithm for digital plane recognition. In: Discrete Geometry for Computer Imagery, pp. 194–205 (1994)Google Scholar
  5. 5.
    Fernique, T.: Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recogn. 42(10), 2229–2238 (2009)CrossRefGoogle Scholar
  6. 6.
    Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. Discrete Appl. Math. 151(1), 169–183 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area estimation. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 356–366. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45129-3_32CrossRefGoogle Scholar
  8. 8.
    Lachaud, J.O., Provençal, X., Roussillon, T.: An output-sensitive algorithm to compute the normal vector of a digital plane. J. Theor. Comput. Sci. (TCS) 624, 73–88 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lachaud, J.-O., Provençal, X., Roussillon, T.: Computation of the normal vector to a digital plane by sampling significant points. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 194–205. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32360-2_15CrossRefGoogle Scholar
  10. 10.
    Lachaud, J.O., Provençal, X., Roussillon, T.: Two plane-probing algorithms for the computation of the normal vector to a digital plane. J. Math. Imaging Vis. 59(1), 23–39 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mesmoudi, M.M.: A simplified recognition algorithm of digital planes pieces. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 404–416. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45986-3_36CrossRefGoogle Scholar
  12. 12.
    Sivignon, I., Dupont, F., Chassery, J.M.: Decomposition of a three-dimensional discrete object surface into discrete plane pieces. Algorithmica 38(1), 25–43 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Veelaert, P.: Digital planarity of rectangular surface segments. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 647–652 (1994)CrossRefGoogle Scholar
  14. 14.
    Veelaert, P.: Fast combinatorial algorithm for tightly separating hyperplanes. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 31–44. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34732-0_3CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université de Lyon, INSA Lyon, LIRIS, UMR CNRS 5205VilleurbanneFrance
  2. 2.Université Savoie Mont Blanc, LAMA, UMR CNRS 5127Le Bourget-du-LacFrance

Personalised recommendations