The Propagated Skeleton: A Robust Detail-Preserving Approach

  • Bastien DurixEmail author
  • Sylvie Chambon
  • Kathryn Leonard
  • Jean-Luc Mari
  • Géraldine Morin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)


A skeleton is a centered geometric representation of a shape that describes the shape in a simple and intuitive way, typically reducing the dimension by at least one. Skeletons are useful in shape analysis and recognition since they provide a framework for part decomposition, are stable under topology preserving deformation, and supply information about the topology and connectivity of the shape. The main drawback to skeletonization algorithms is their sensitivity to small boundary perturbations: noise on a shape boundary, such as pixelation, will produce many spurious branches within a skeleton. As a result, skeletonizations often require a second pruning step. In this article, we propose a new 2D skeletonization algorithm that directly produces a clean skeleton for a shape, avoiding the creation of noisy branches. The approach propagates a circle inside the shape, maintaining neighborhood-based contact with the boundary and bypassing boundary oscillations below a chosen threshold. By explicitly modeling the scale of noise via two parameters that are shape-independent, the algorithm is robust to noise while preserving important shape details. Neither preprocessing of the shape boundary nor pruning of the skeleton is required. Our method produces skeletons with fewer spurious branches than other state-of-the-art methods, while outperforming them visually and according to error measures such as Hausdorff distance and symmetric difference, as evaluated on the MPEG-7 database (1033 images).


  1. 1.
    Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Jüttler, B., Rabl, M.: Medial axis computation for planar free-form shapes. Comput. Aided Des. 41(5), 339–349 (2009)CrossRefGoogle Scholar
  2. 2.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. 19(2–3), 127–153 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Attali, D., Montanvert, A.: Computing and simplifying 2D and 3D continuous skeletons. Comput. Vis. Image Underst. 67(3), 261–273 (1997)CrossRefGoogle Scholar
  4. 4.
    Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. PAMI 30(7), 1282–1292 (2008)CrossRefGoogle Scholar
  5. 5.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Symposium on Models for the Perception of Speech and Visual Form (1967)Google Scholar
  6. 6.
    Borgefors, G., Nyström, I., di Baja, G.S.: Computing skeletons in three dimensions. Pattern Recognit. 32(7), 1225–1236 (1999)CrossRefGoogle Scholar
  7. 7.
    Chazal, F., Lieutier, A.: The \(\lambda \)-medial axis. Graph. Models 67(4), 304–331 (2005)CrossRefGoogle Scholar
  8. 8.
    Giesen, J., Miklos, B., Pauly, M., Wormser, C.: The scale axis transform. In Annual Symposium on Computational Geometry (2009)Google Scholar
  9. 9.
    Lam, L., Lee, S.-W., Suen, C.Y.: Thinning methodologies - a comprehensive survey. IEEE Trans. PAMI 14(9), 869–885 (1992)CrossRefGoogle Scholar
  10. 10.
    Latecki, L.J., Lakamper, R., Eckhardt, T.: Shape descriptors for non-rigid shapes with a single closed contour. In: IEEE Conference on CVPR (2000)Google Scholar
  11. 11.
    Leborgne, A., Mille, J., Tougne, L.: Noise-resistant digital euclidean connected skeleton for graph-based shape matching. J. Vis. Commun. Image Represent. 31, 165–176 (2015)CrossRefGoogle Scholar
  12. 12.
    Leonard, K., Morin, G., Hahmann, S., Carlier, A.: A 2D shape structure for decomposition and part similarity. In: ICPR (2016)Google Scholar
  13. 13.
    Leymarie, F., Levine, M.D.: Simulating the grassfire transform using an active contour model. IEEE Trans. PAMI 14(1), 56–75 (1992)CrossRefGoogle Scholar
  14. 14.
    Ogniewicz, R., Ilg, M.: Voronoi skeletons: theory and applications. In: IEEE CVPR (1992)Google Scholar
  15. 15.
    Rumpf, M., Telea, A.: A continuous skeletonization method based on level sets. In: Proceedings of the symposium on Data Visualisation (2002)Google Scholar
  16. 16.
    Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recognit. Lett. 76(Suppl. C), 3–12 (2015)Google Scholar
  17. 17.
    Shen, W., Bai, X., Hu, R., Wang, H., Latecki, L.J.: Skeleton growing and pruning with bending potential ratio. Pattern Recognit. 44(2), 196–209 (2011)CrossRefGoogle Scholar
  18. 18.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. Int. J. Comput. Vis. 35(1), 13–32 (1999)CrossRefGoogle Scholar
  19. 19.
    Sud, A., Foskey, M., Manocha, D.: Homotopy-preserving medial axis simplification. In: ACM Symposium on Solid and Physical Modeling (2005)Google Scholar
  20. 20.
    Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and retrieval. In: Shape Modeling International (2003)Google Scholar
  21. 21.
    Vincze, M., Kővári, B.A.: Comparative survey of thinning algorithms. In: International Symposium of Hungarian Researchers on Computational Intelligence and Informatics (2009)Google Scholar
  22. 22.
    Xu, Y., Wang, B., Liu, W., Bai, X.: Skeleton graph matching based on critical points using path similarity. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5996, pp. 456–465. Springer, Heidelberg (2010). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bastien Durix
    • 1
    Email author
  • Sylvie Chambon
    • 1
  • Kathryn Leonard
    • 2
  • Jean-Luc Mari
    • 3
  • Géraldine Morin
    • 1
  1. 1.IRIT-University of Toulouse, CNRSToulouseFrance
  2. 2.Occidental CollegeLos AngelesUSA
  3. 3.Aix Marseille Univ, Université de Toulon, CNRS, LISMarseilleFrance

Personalised recommendations