Advertisement

Vector-Based Morphological Operations on Polygons Using Straight Skeletons for Digital Pathology

  • Daniel Felipe González Obando
  • Jean-Christophe Olivo-Marin
  • Laurent Wendling
  • Vannary Meas-YedidEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)

Abstract

In this work we present an efficient implementation of vector-based mathematical morphology operators applied to simple polygons by performing wavefront propagation and computing polygon straight skeletons. In Digital Pathology (DP), the slide scanner generates important volume of images from tissues called Whole Slide Image (WSI). The main goal of the DP is to detect the biological stained structures in order to quantify the tissue pathology, such as lesions or cancerous regions. We propose the use of Adapted Straight Skeletons on polygons as an efficient technique in time and memory, to improve image segmentation and image analysis. Thanks to the use of polygons instead of bitmaps to store segmentation results, the performance of straight skeletons depends only on the polygon control points. These straight skeletons can be applied in order to perform fast morphological operations such as dilation, erosion, closing, opening, skeletonizing. When combined, these operations offer different interesting outcomes: (i) multiple disjoint-segmented shapes can be linked together to create a joint skeleton, (ii) the topological structure of segmentation can be extracted as a straight skeleton. Then, it can be used as features for structural and spatial tissue analysis.

Keywords

Polygonal morphological operations Straight skeletons Digital Pathology 

References

  1. 1.
    Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing the Voronoï diagram of a convex polygon. Discrete Comput. Geom. 4(6), 591–604 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aichholzer, O., Alberts, D., Aurenhammer, F., Gartner, B.: Straight skeletons of simple polygons. In: Proceedings of 4th International Symposium of LIESMARS, pp. 114–124 (1995)Google Scholar
  3. 3.
    Aichholzer, O., Aurenhammer, F.: Straight skeleton for general polygonal figures in the plane. In: Samoilenko, A.M. (ed.) Voronoï’s Impact on Modern Science, vol. 2, pp. 7–21. Institute of Mathematics of the National Academy of Sciences of Ukraine (1998)Google Scholar
  4. 4.
    Attali, D., Lachaud, J.O.: Delaunay conforming iso-surface, skeleton extraction and noise removal. Comput. Geom. 19(2), 175–189 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Attali, D., Montanvert, A.: Modeling noise for a better simplification of skeletons. In: Proceedings of 3rd IEEE ICIP, vol. 3, pp. 13–16, September 1996Google Scholar
  6. 6.
    Biedl, T., Held, M., Huber, S., Kaaser, D., Palfrader, P.: A simple algorithm for computing positively weighted straight skeletons of monotone polygons. Inf. Process. Lett. 115(2), 243–247 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Biedl, T., Held, M., Huber, S., Kaaser, D., Palfrader, P.: Weighted straight skeletons in the plane. Comput. Geom. 48(2), 120–133 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  9. 9.
    Cacciola, F.: 2D straight skeleton and polygon offsetting. In: CGAL User and Reference Manual, 4.10.1 edn. CGAL Editorial Board (2017)Google Scholar
  10. 10.
    Davies, E., Plummer, A.: Thinning algorithms: a critique and a new methodology. Pattern Recognit. 14(1), 53–63 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    Eder, G., Held, M.: Computing positively weighted straight skeletons of simple polygons based on a bisector arrangement. Inf. Process. Lett. 132, 28–32 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: applications of a data structure for finding pairwise interactions. Discrete Comput. Geom. 22(4), 569–582 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ge, Y., Fitzpatrick, J.M.: On the generation of skeletons from discrete euclidean distance maps. IEEE Trans. Pattern Anal. Mach. Intell. 18, 1055–1066 (1996)CrossRefGoogle Scholar
  15. 15.
    Guo, Z., Hall, R.W.: Parallel thinning with two-subiteration algorithms. Commun. ACM 32(3), 359–373 (1989)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hesselink, W.H., Roerdink, J.B.T.M.: Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2204–2217 (2008)CrossRefGoogle Scholar
  17. 17.
    Huang, C.H., Veillard, A., Roux, L., Lomenie, N., Racoceanu, D.: Time efficient sparse analysis of histopathological whole slide images. Comput. Med. Imaging Graph. 35(7), 579–591 (2011)CrossRefGoogle Scholar
  18. 18.
    Huber, S., Held, M.: A fast straight-skeleton algorithm based on generalized motorcycle graphs. Int. J. Comput. Geom. Appl. 22(5), 471–498 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kelly, T.: Unwritten procedural modeling with the straight skeleton. Ph.D. thesis, University of Glasgow (2013)Google Scholar
  20. 20.
    Kimmel, R., Shaked, D., Kiryati, N., Bruckstein, A.M.: Skeletonization via distance maps and level sets. Comput. Vis. Image Underst. 62(3), 382–391 (1995)CrossRefGoogle Scholar
  21. 21.
    Ogniewicz, R., Kübler, O.: Hierarchic Voronoï skeletons. Pattern Recognit. 28(3), 343–359 (1995)CrossRefGoogle Scholar
  22. 22.
    Pudney, C.: Distance-ordered homotopic thinning. Comput. Vis. Image Underst. 72(3), 404–413 (1998)CrossRefGoogle Scholar
  23. 23.
    Remy, E., Thiel, E.: Exact medial axis with euclidean distance. Image Vis. Comput. 23(2), 167–175 (2005)CrossRefGoogle Scholar
  24. 24.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc., Orlando (1983)Google Scholar
  25. 25.
    Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: Hamilton-jacobi skeletons. Int. J. Comput. Vis. 48(3), 215–231 (2002)zbMATHCrossRefGoogle Scholar
  26. 26.
    Talbot, H.: Euclidean skeletons and conditional bisectors. In: 1992 Visual Communications and Image Processing, pp. 862–876 (1992)Google Scholar
  27. 27.
    Vincent, L.M.: Efficient computation of various types of skeletons. In: Proceedings of SPIE, vol. 1445, pp. 1445–1445-15 (1991)Google Scholar
  28. 28.
    Vizilter, Y.V., Pyt’ev, Y.P., Chulichkov, A.I., Mestetskiy, L.M.: Morphological image analysis for computer vision applications. In: Favorskaya, M.N., Jain, L.C. (eds.) Computer Vision in Control Systems-1. ISRL, vol. 73, pp. 9–58. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-10653-3_2CrossRefGoogle Scholar
  29. 29.
    Wein, R., Baram, A., Flato, E., Fogel, E., Hemmer, M., Morr, S.: 2D minkowski sums. In: CGAL User and Reference Manual, 4.10.1 edn. CGAL Editorial Board (2017)Google Scholar
  30. 30.
    Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel Felipe González Obando
    • 1
    • 2
  • Jean-Christophe Olivo-Marin
    • 1
  • Laurent Wendling
    • 3
  • Vannary Meas-Yedid
    • 1
    Email author
  1. 1.BIA, Institut Pasteur, UMR 3691, CNRSParisFrance
  2. 2.ED EDITE, Sorbonne Université, Collège doctoralParisFrance
  3. 3.Université Paris Descartes, LIPADE, Sorbonne Paris CitéParisFrance

Personalised recommendations