Advertisement

Digital Curvature Evolution Model for Image Segmentation

  • Daniel AntunesEmail author
  • Jacques-Olivier Lachaud
  • Hugues Talbot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)

Abstract

Recent works have indicated the potential of using curvature as a regularizer in image segmentation, in particular for the class of thin and elongated objects. These are ubiquitous in biomedical imaging (e.g. vascular networks), in which length regularization can sometime perform badly, as well as in texture identification. However, curvature is a second-order differential measure, and so its estimators are sensitive to noise. The straightforward extensions to Total Variation are not convex, making them a challenge to optimize. State-of-art techniques make use of a coarse approximation of curvature that limits practical applications.

We argue that curvature must instead be computed using a multigrid convergent estimator, and we propose in this paper a new digital curvature flow which mimics continuous curvature flow. We illustrate its potential as a post-processing step to a variational segmentation framework.

Keywords

Multigrid convergence Digital estimator Curvature Shape optimization Image segmentation 

References

  1. 1.
    Appleton, B., Talbot, H.: Globally optimal geodesic active contours. J. Math. Imaging Vis. 23(1), 67–86 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 1, pp. 105–112 (2001)Google Scholar
  3. 3.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefGoogle Scholar
  4. 4.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–258 (2004)CrossRefGoogle Scholar
  5. 5.
    Coeurjolly, D., Lachaud, J.-O., Levallois, J.: Integral based curvature estimators in digital geometry. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 215–227. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37067-0_19CrossRefzbMATHGoogle Scholar
  6. 6.
    Coeurjolly, D., Lachaud, J.O., Roussillon, T.: Multigrid convergence of discrete geometric estimators. In: Brimkov, V., Barneva, R. (eds.) Digital Geometry Algorithms. LNCVB, vol. 2, pp. 395–424. Springer, Dordrecht (2012).  https://doi.org/10.1007/978-94-007-4174-4_13CrossRefGoogle Scholar
  7. 7.
    El-Zehiry, N.Y., Grady, L.: Fast global optimization of curvature. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3257–3264, June 2010Google Scholar
  8. 8.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefGoogle Scholar
  9. 9.
    Lachaud, J.O.: Non-Euclidean spaces and image analysis: Riemannian and discrete deformable models, discrete topology and geometry. Ph.D. thesis, Université Sciences et Technologies - Bordeaux I, December 2006. https://tel.archives-ouvertes.fr/tel-00396332
  10. 10.
    Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vis. Comput. 25(10), 1572–1587 (2007)CrossRefGoogle Scholar
  11. 11.
    Manay, S., Hong, B.-W., Yezzi, A.J., Soatto, S.: Integral invariant signatures. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 87–99. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24673-2_8CrossRefGoogle Scholar
  12. 12.
    Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings 1998 International Conference on Image Processing, ICIP98 (Cat. No. 98CB36269), vol. 3, pp. 259–263, October 1998Google Scholar
  13. 13.
    Nieuwenhuis, C., Toeppe, E., Gorelick, L., Veksler, O., Boykov, Y.: Efficient squared curvature. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4098–4105, June 2014Google Scholar
  14. 14.
    Pottmann, H., Wallner, J., Huang, Q.X., Yang, Y.L.: Integral invariants for robust geometry processing. Comput. Aided Geom. Des. 26(1), 37–60 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rother, C., Kolmogorov, V., Lempitsky, V.S., Szummer, M.: Optimizing binary MRFs via extended roof duality. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  16. 16.
    Roussillon, T., Lachaud, J.-O.: Accurate curvature estimation along digital contours with maximal digital circular arcs. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 43–55. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21073-0_7CrossRefGoogle Scholar
  17. 17.
    Schindele, A., Massopust, P., Forster, B.: Multigrid convergence for the MDCA curvature estimator. J. Math. Imaging Vis. 57(3), 423–438 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schoenemann, T., Kahl, F., Cremers, D.: Curvature regularity for region-based image segmentation and inpainting: a linear programming relaxation. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 17–23, September 2009Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel Antunes
    • 1
    Email author
  • Jacques-Olivier Lachaud
    • 1
  • Hugues Talbot
    • 2
  1. 1.Université Savoie Mont Blanc, LAMA, UMR CNRS 5127ChambéryFrance
  2. 2.CentraleSupelec Université Paris-Saclay, équipe Inria GALENParisFrance

Personalised recommendations