On the Degree Sequence of 3-Uniform Hypergraph: A New Sufficient Condition

  • Andrea FrosiniEmail author
  • Christophe Picouleau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)


The study of the degree sequences of h-uniform hypergraphs, say h-sequences, was a longstanding open problem in the case of \(h>2\), until very recently where its decision version was proved to be NP-complete. Formally, the decision version of this problem is: Given \(\pi =(d_1,d_2,\ldots ,d_n)\) a non increasing sequence of positive integers, is \(\pi \) the degree sequence of a h-uniform simple hypergraph?

Now, assuming \(P\ne NP\), we know that such an effective characterization cannot exist even for the case of 3-uniform hypergraphs.

However, several necessary or sufficient conditions can be found in the literature; here, relying on a result of S. Behrens et al., we present a sufficient condition for the 3-graphicality of a degree sequence and a polynomial time algorithm that realizes one of the associated 3-uniform hypergraphs, if it exists. Both the results are obtained by borrowing some mathematical tools from discrete tomography, a quite recent research area involving discrete mathematics, discrete geometry and combinatorics.


h-uniform hypergraph Hypergraph degree sequence Discrete tomography Reconstruction problem 


  1. 1.
    Barcucci, E., Brocchi, S., Frosini, A.: Solving the two color problem: an heuristic algorithm. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 298–310. Springer, Heidelberg (2011). Scholar
  2. 2.
    Behrens, S., et al.: New results on degree sequences of uniform hypergraphs. Electron. J. Comb. 20(4), P14 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bentz, C., Costa, M.-C., Picouleau, C., Ries, B., de Werra, D.: Degree-constrained edge partitioning in graphs arising from discrete tomography. J. Graph Algorithms Appl. 13(2), 99–118 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berge, C.: Graphs. Gauthier-Villars, Paris (1983)zbMATHGoogle Scholar
  5. 5.
    Berge, C.: Hypergraphs. North Holland, Amsterdam (1989)zbMATHGoogle Scholar
  6. 6.
    Brylawski, T.: The lattice of integer partitions. Discrete Math. 6, 210–219 (1973)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Brlek, S., Frosini, A.: A tomographical interpretation of a sufficient condition on h-graphical sequences. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 95–104. Springer, Cham (2016). Scholar
  8. 8.
    Brocchi, S., Frosini, A., Rinaldi, S.: A reconstruction algorithm for a subclass of instances of the 2-color problem. Theor. Comput. Sci. 412, 4795–4804 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brocchi, S., Frosini, A., Rinaldi, S.: Solving some instances of the 2-color problem. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 505–516. Springer, Heidelberg (2009). Scholar
  10. 10.
    Brocchi, S., Frosini, A., Rinaldi, S.: The 1-color problem and the Brylawski model. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 530–538. Springer, Heidelberg (2009). Scholar
  11. 11.
    Colbourne, C.J., Kocay, W.L., Stinson, D.R.: Some NP-complete problems for hypergraph degree sequences. Discrete Appl. Math. 14, 239–254 (1986)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Costa, M.-C., de Werra, D., Picouleau, C., Schindl, D.: A solvable case of image reconstruction in discrete tomography. Discrete Appl. Math. 148(3), 240–245 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Costa, M.-C., de Werra, D., Picouleau, C.: Using graphs for some discrete tomography problems. Discrete Appl. Math. 154(1), 35–46 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dewdney, A.: Degree sequences in complexes and hypergraphs. Proc. Am. Math. Soc. 53(2), 535–540 (1975)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Deza, A., Levin, A., Meesum, S.M., Onn, S.: Optimization over degree sequences. SIAM J. Discrete Math. 32(3), 2067–2079 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dürr, C., Guíñez, F., Matamala, M.: Reconstructing 3-colored grids from horizontal and vertical projections is NP-hard: a solution to the 2-atom problem in discrete tomography. SIAM J. Discrete Math. 26(1), 330–352 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Erdös, P., Gallai, T.: On the maximal number of vertices representing the edges of a graph. MTA Mat. Kut. Int. Közl. 6, 337–357 (1961)zbMATHGoogle Scholar
  18. 18.
    Frosini, A., Picouleau, C., Rinaldi, S.: On the degree sequences of uniform hypergraphs. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 300–310. Springer, Heidelberg (2013). Scholar
  19. 19.
    Gale, D.: A theorem on flows in networks. Pacific J. Math. 7, 1073–1082 (1957)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Guíñez, F., Matamala, M., Thomassé, S.: Realizing disjoint degree sequences of span at most two: a tractable discrete tomography problem. Discrete Appl. Math. 159(1), 23–30 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Herman, G.T., Kuba, A.: Discrete Tomography: Foundations Algorithms and Applications. Birkhauser, Boston (1999)CrossRefGoogle Scholar
  22. 22.
    Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhauser, Boston (2007)CrossRefGoogle Scholar
  23. 23.
    Kocay, W., Li, P.C.: On 3-hypergraphs with equal degree sequences. Ars Combinatoria 82, 145–157 (2006)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can. J. Math. 9, 371–377 (1957)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sierksma, G., Hoogeveen, H.: Seven criteria for integer sequences being graphic. J. Graph Theory 15(2), 223–231 (1991)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tripathi, A., Tyagi, H.: A simple criterion on degree sequences of graphs. Discrete Appl. Math. 156(18), 3513–3517 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di FirenzeFlorenceItaly
  2. 2.CEDRIC, CNAMParis Cedex 03France

Personalised recommendations