Advertisement

Rigid Motions in the Cubic Grid: A Discussion on Topological Issues

  • Nicolas PassatEmail author
  • Yukiko Kenmochi
  • Phuc Ngo
  • Kacper Pluta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)

Abstract

Rigid motions on 2D digital images were recently investigated with the purpose of preserving geometric and topological properties. From the application point of view, such properties are crucial in image processing tasks, for instance image registration. The known ideas behind preserving geometry and topology rely on connections between the 2D continuous and 2D digital geometries that were established via various notions of regularity on digital and continuous sets. We start by recalling these results; then we discuss the difficulties that arise when extending them from \(\mathbb {Z}^2\) to \(\mathbb {Z}^3\). On the one hand, we aim to provide a discussion on strategies that prove to be successful in \(\mathbb {Z}^2\) and remain valid in \(\mathbb {Z}^3\); on the other hand, we explain why certain strategies cannot be extended to the 3D framework of digitized rigid motions. We also emphasize the relationships that may exist between specific concepts initially proposed in \(\mathbb {Z}^2\). Overall, our objective is to initiate an investigation about the most promising approaches for extending the 2D results to higher dimensions.

References

  1. 1.
    Bazin, P.L., Ellingsen, L.M., Pham, D.L.: Digital homeomorphisms in deformable registration. In: Karssemeijer, N., Lelieveldt, B. (eds.) Information Processing in Medical Imaging, pp. 211–222. Springer, Berlin Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73273-0_18Google Scholar
  2. 2.
    Bertrand, G.: On P-simple points. Comptes Rendus de l’Académie des Sciences, Série Mathématique I(321), 1077–1084 (1995)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognit. Lett. 15(2), 169–175 (1994)zbMATHGoogle Scholar
  4. 4.
    Boutry, N., Géraud, T., Najman, L.: A tutorial on well-composedness. J. Math. Imaging Vis. 60(3), 443–478 (2018)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Khalimsky, E.: Topological structures in computer science. J. Appl. Math. Simul. 1(1), 25–40 (1987)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kong, T.Y.: A digital fundamental group. Comput. Graph. 13(2), 159–166 (1989)Google Scholar
  7. 7.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989)Google Scholar
  8. 8.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46(2), 141–161 (1989)Google Scholar
  9. 9.
    Largeteau-Skapin, G., Andres, E.: Discrete-Euclidean operations. Discret. Appl. Math. 157(3), 510–523 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Latecki, L.J.: 3D well-composed pictures. Graph. Model Image Process. 59(3), 164–172 (1997)Google Scholar
  11. 11.
    Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 5(1), 70–83 (1995)Google Scholar
  12. 12.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high-resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)Google Scholar
  13. 13.
    Maunder, C.R.F.: Algebraic Topology. Dover (1996)Google Scholar
  14. 14.
    Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: a unified topological framework. J. Math. Imaging Vis. 44(1), 19–37 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Mazo, L., Passat, N., Couprie, M., Ronse, C.: Paths, homotopy and reduction in digital images. Acta Appl. Math. 113(2), 167–193 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ngo, P., Passat, N., Kenmochi, Y., Debled-Rennesson, I.: Geometric preservation of 2D digital objects under rigid motions. J. Math. Imaging Vis. 61(2), 204–223 (2019).  https://doi.org/10.1007/s10851-018-0842-9MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ngo, P., Passat, N., Kenmochi, Y., Debled-Rennesson, I.: Convexity invariance of voxel objects under rigid motions. In: International Conference on Pattern Recognition, pp. 1157–1162 (2018)Google Scholar
  18. 18.
    Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Passat, N., Mazo, L.: An introduction to simple sets. Pattern Recognit. Lett. 30(15), 1366–1377 (2009)Google Scholar
  20. 20.
    Pavlidis, T.: Algorithms for Graphics and Image Processing. Springer/Computer Science Press, Berlin/Rockville (1982)zbMATHGoogle Scholar
  21. 21.
    Rosenfeld, A.: Adjacency in digital pictures. Inf. Control 26(1), 24–33 (1974)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Rosenfeld, A.: Digital topology. Am. Math. Mon. 86(8), 621–630 (1979)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Rosenfeld, A., Kong, T.Y., Nakamura, A.: Topology-preserving deformations of two-valued digital pictures. Graph. Models Image Process. 60(1), 24–34 (1998)Google Scholar
  24. 24.
    Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 126–140 (2007)Google Scholar
  25. 25.
    Stelldinger, P., Terzic, K.: Digitization of non-regular shapes in arbitrary dimensions. Image Vis. Comput. 26(10), 1338–1346 (2008)Google Scholar
  26. 26.
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université de Reims Champagne-Ardenne, CReSTICReimsFrance
  2. 2.Université Paris-Est, LIGM, CNRS - ENPC - ESIEE Paris - UPEMChamps-sur-MarneFrance
  3. 3.Université de Lorraine, LORIA, UMR 7503Vandoeuvre-lès-NancyFrance
  4. 4.Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations