Digital Two-Dimensional Bijective Reflection and Associated Rotation

  • Eric AndresEmail author
  • Mousumi Dutt
  • Arindam Biswas
  • Gaelle Largeteau-Skapin
  • Rita Zrour
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)


In this paper, a new bijective reflection algorithm in two dimensions is proposed along with an associated rotation. The reflection line is defined by an arbitrary Euclidean point and a straight line passing through this point. The reflection line is digitized and the 2D space is paved by digital perpendicular (to the reflection line) straight lines. For each perpendicular line, integer points are reflected by central symmetry with respect to the reflection line. Two consecutive digital reflections are combined to define a digital bijective rotation about arbitrary center, i.e. bijective digital rigid motion.


Digital reflection Bijective digital rotation Digital rotation Bijective digital rigid motion 


  1. 1.
    Goodman, R.: Alice through looking glass after looking glass: the mathematics of mirrors and kaleidoscopes. Am. Math. Mon. 111(4), 281–298 (2004). Scholar
  2. 2.
    Richard, A., Fuchs, L., Largeteau-Skapin, G., Andres, E.: Decomposition of nD-rotations: classification, properties and algorithm. Graph. Model. 73(6), 346–353 (2011)CrossRefGoogle Scholar
  3. 3.
    Fredriksson, K., Mäkinen, V., Navarro, G.: Rotation and lighting invariant template matching. Inf. Comput. 205(7), 1096–1113 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)CrossRefGoogle Scholar
  5. 5.
    Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective digitized rigid motions on subsets of the plane. J. Math. Imaging Vis. 59(1), 84–105 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Andres, E.: The quasi-shear rotation. In: Miguet, S., Montanvert, A., Ubéda, S. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 307–314. Springer, Heidelberg (1996). Scholar
  7. 7.
    Carstens, H.-G., Deuber, W., Thumser, W., Koppenrade, E.: Geometrical bijections in discrete lattices. Comb. Probab. Comput. 8(1–2), 109–129 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Nouvel, B., Rémila, E.: Characterization of bijective discretized rotations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 248–259. Springer, Heidelberg (2004). Scholar
  9. 9.
    Nouvel, B., Rémila, É.: Incremental and transitive discrete rotations. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 199–213. Springer, Heidelberg (2006). Scholar
  10. 10.
    Roussillon, T., Coeurjolly, D.: Characterization of bijective discretized rotations by gaussian integers, Technical report, LIRIS UMR CNRS 5205, January 2016Google Scholar
  11. 11.
    Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective rigid motions of the 2D cartesian grid. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 359–371. Springer, Cham (2016). Scholar
  12. 12.
    Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijectivity certification of 3D digitized rotations. In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 30–41. Springer, Cham (2016). Scholar
  13. 13.
    Pluta, K., Roussillon, T., Coeurjolly, D., Romon, P., Kenmochi, Y., Ostromoukhov, V.: Characterization of bijective digitized rotations on the hexagonal grid, Technical report, HAL, submitted to Journal of Mathematical Imaging and Vision, June 2017.
  14. 14.
    Andres, E.: Shear based bijective digital rotation in hexagonal grids. Submitted to Pattern recognition Letters 2018.
  15. 15.
    Andres, E., Largeteau-Skapin, G., Zrour, R.: Shear based bijective digital rotation in triangular grids. Submitted to Pattern recognition Letters (2018).
  16. 16.
    Reveillès, J.-P.: Calcul en nombres entiers et algorithmique, Ph.D. thesis. Université Louis Pasteur, Strasbourg, France (1991)Google Scholar
  17. 17.
    Jacob, M.-A., Andres, E.: On discrete rotations. In: Discrete Geometry for Computer Imagery, p. 161 (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eric Andres
    • 1
    Email author
  • Mousumi Dutt
    • 2
  • Arindam Biswas
    • 3
  • Gaelle Largeteau-Skapin
    • 1
  • Rita Zrour
    • 1
  1. 1.University of Poitiers, Laboratory XLIM, ASALI, UMR CNRS 7252, BP 30179Futuroscope ChasseneuilFrance
  2. 2.Department of Computer Science and EngineeringSt. Thomas’ College of Engineering and TechnologyKolkataIndia
  3. 3.Department of Information TechnologyIndian of Engineering Science and Technology, ShibpurHowrahIndia

Personalised recommendations