Skip to main content

Principles and Guidelines for Quantum Performance Analysis

  • Conference paper
  • First Online:
Quantum Technology and Optimization Problems (QTOP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11413))

Included in the following conference series:

Abstract

Expanding access to practical quantum computers prompts a widespread need to evaluate their performance. Principles and guidelines for carrying out sound empirical work on quantum computing systems are proposed. The guidelines draw heavily on classical experience in experimental algorithmics and computer systems performance analysis, with some adjustments to address issues in quantum computing. The focus is on issues related to quantum annealing processors, although much of the discussion applies to more general scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A solver is an algorithm that has been implemented in code or hardware. We assume throughout that the quantum algorithm and platform are tested as a unit.

  2. 2.

    Because over 60% of integers are divisible by primes less than or equal to 11.

  3. 3.

    The No Free Lunch theorem is a formal result that applies to a certain class of algorithms; the No Free Lunch principle is a folklore rule that applies to heuristics. The theorem and the principle apply to classical but not to quantum solvers.

References

  1. Reverse quantum annealing for local refinement of solutions. D-Wave Whitepaper, 14-1018A-A (2017)

    Google Scholar 

  2. Andriyash, E., et al.: Boosting integer factoring performance via quantum annealing offsets. 14-1002A-B (2016)

    Google Scholar 

  3. Bailey, D.H.: Misleading performance reporting in the supercomputing field. Sci. Program. 1(2), 141–151 (1992)

    Google Scholar 

  4. Bailey, D.H.: 12 ways to fool the masses: Fast forward to 2011 (Powerpoint) crd.lbl.gov/~dhbailey (2011). An earlier version appeared as, 1991 “Twelve ways to fool the masses when giving performance results on parallel computers. Supercomputing Review 4(8), 54–55

  5. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Steward Jr., W.R.: Designing and reporting on computational experiments with heuristic methods. J. Heuristics 1, 9–32 (1995)

    Article  Google Scholar 

  6. Barr, R.S., Hickman, B.L.: Reporting computational experiments with parallel algorithms: issues, measures, and experts’ opinions. ORSA J. Comput. 5(1), 2–18 (1993)

    Article  Google Scholar 

  7. Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.): Experimental Methods for the Analysis of Optimization Algorithms. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-9

    Book  MATH  Google Scholar 

  8. Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018)

    Article  Google Scholar 

  9. Cohen, P.R.: Empirical Methods for Artificial Intelligence. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  10. Denchev, V.S., et al.: What is the computational value of finite range tunneling? Phys. Rev. X 5, 031026 (2016)

    Google Scholar 

  11. Hen, I., Job, J., Albash, T., Rønnow, T.R., Troyer, M., Lidar, D.: Probing for quantum speedup in spin glass problems with planted solutions. arXiv:1502.01663 (2015)

  12. Hockney, R.W.: The Science of Computer Benchmarking. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  13. Jain, R.: The Art of Computer Systems Performance Analysis. Wiley, Hoboken (1991)

    MATH  Google Scholar 

  14. Job, J., Lidar, D.A.: Test-driving 1000 qubits. arXiv:1706.07124 (2017)

  15. Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms. In: Goldwasser, M.H., et al. (eds.) Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges. Discrete Mathematics and Theoretical Computer Science, AMS, vol. 59 (2002)

    Google Scholar 

  16. Katzgraber, H.G., Hamze, F., Zhu, Z., Ochoa, A.J., Munoz-Bauza, H.: Seeking quantum speedup through spin glasses: the good, the bad, and the ugly. Phys. Rev. X 5, 031026 (2015)

    Google Scholar 

  17. King, A.D., Lanting, T., Harris, R.: Performance of a quantum annealer on range-limited constraint satisfaction problems. arXiv:1502.02089 (2015)

  18. Macready, W.G., Wolpert, D.H.: What makes an optimization problem hard? Complexity 5, 40–46 (1996)

    Article  MathSciNet  Google Scholar 

  19. Mandrà, S., Katzgraber, H.G.: A deceptive step towards quantum speedup detection. arXiv:1711.03168 (2018)

  20. Marshall, J., Venturelli, D., Hen, I., Rieffel, E.G.: The power of pausing: advancing understanding of thermalization in experimental quantum annealers. arXiv:1810.05581 (2016)

  21. McGeoch, C.C.: Toward an experimental method for algorithm simulation (feature article). INFORMS J. Comput. 8(1), 1–15 (1995)

    Article  Google Scholar 

  22. McGeoch, C.C.: A Guide to Experimental Algorithmics. Cambridge Press, Cambridge (2012)

    Google Scholar 

  23. McGeoch, C., Sanders, P., Fleischer, R., Cohen, P.R., Precup, D.: Using finite experiments to study asymptotic performance. In: Fleischer, R., Moret, B., Schmidt, E.M. (eds.) Experimental Algorithmics. LNCS, vol. 2547, pp. 93–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36383-1_5

    Chapter  Google Scholar 

  24. Panny, W.: Deletions in random binary search trees: a story of errors. J. Stat. Plan. Infer. 140(8), 2335–2345 (2010)

    Article  MathSciNet  Google Scholar 

  25. Parekh, O., et al.: Benchmarking Adiabatic Quantum Optimization for Complex Network Analysis, volume SAND2015-3025. Sandia Report, April 2015

    Google Scholar 

  26. Rønnow, T.F., et al.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014)

    Article  Google Scholar 

  27. Trummer, I., Koch, C.: Multiple query optimization on the D-Wave 2x adiabatic quantum computer. VLDB 9, 648–659 (2016)

    Google Scholar 

  28. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine C. McGeoch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McGeoch, C.C. (2019). Principles and Guidelines for Quantum Performance Analysis. In: Feld, S., Linnhoff-Popien, C. (eds) Quantum Technology and Optimization Problems. QTOP 2019. Lecture Notes in Computer Science(), vol 11413. Springer, Cham. https://doi.org/10.1007/978-3-030-14082-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14082-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14081-6

  • Online ISBN: 978-3-030-14082-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics