Advertisement

Assessing Solution Quality of 3SAT on a Quantum Annealing Platform

  • Thomas GaborEmail author
  • Sebastian Zielinski
  • Sebastian Feld
  • Christoph Roch
  • Christian Seidel
  • Florian Neukart
  • Isabella Galter
  • Wolfgang Mauerer
  • Claudia Linnhoff-Popien
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11413)

Abstract

When solving propositional logic satisfiability (specifically 3SAT) using quantum annealing, we analyze the effect the difficulty of different instances of the problem has on the quality of the answer returned by the quantum annealer. A high-quality response from the annealer in this case is defined by a high percentage of correct solutions among the returned answers. We show that the phase transition regarding the computational complexity of the problem, which is well-known to occur for 3SAT on classical machines (where it causes a detrimental increase in runtime), persists in some form (but possibly to a lesser extent) for quantum annealing.

Keywords

Quantum computing Quantum annealing D-wave 3SAT Boolean satisfiability NP Phase transition 

Notes

Acknowledgement

Research was funded by Volkswagen Group, department Group IT.

References

  1. 1.
    Adams, D.: The Hitchhiker’s Guide to the Galaxy (1979)Google Scholar
  2. 2.
    Albash, T., Lidar, D.A.: Adiabatic quantum computing. arXiv:1611.04471 (2016)
  3. 3.
    Amara, P., Hsu, D., Straub, J.E.: Global energy minimum searches using an approximate solution of the imaginary time Schrödinger equation. J. Phys. Chem. 97(25), 6715–6721 (1993)CrossRefGoogle Scholar
  4. 4.
    Apolloni, B., Carvalho, C., De Falco, D.: Quantum stochastic optimization. Stoch. Process. Their Appl. 33(2), 233–244 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Apolloni, B., De Falco, D., Cesa-Bianchi, N.: A numerical implementation of “quantum annealing”. Technical report (1988)Google Scholar
  6. 6.
    Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi, P., Kann, V.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, 1st edn. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-642-58412-1CrossRefzbMATHGoogle Scholar
  7. 7.
    Benjamin, S.C., Zhao, L., Fitzsimons, J.F.: Measurement-driven quantum computing: Performance of a 3-SAT solver. arXiv:1711.02687 (2017)
  8. 8.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bravyi, S., Gosset, D., Koenig, R.: Quantum advantage with shallow circuits. Science 362(6412), 308–311 (2018)CrossRefGoogle Scholar
  10. 10.
    Cheeseman, P.C., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: IJCAI, vol. 91 (1991)Google Scholar
  11. 11.
    Chen, L., Aihara, K.: Chaotic simulated annealing by a neural network model with transient chaos. Neural Netw. 8(6), 915–930 (1995)CrossRefGoogle Scholar
  12. 12.
    Choi, V.: Adiabatic quantum algorithms for the NP-complete maximum-weight independent set, exact cover and 3SAT problems. arXiv:1004.2226 (2010)
  13. 13.
    Choi, V.: Different adiabatic quantum optimization algorithms for the NP-complete exact cover and 3SAT problems. Quant. Inform. Comput. 11(7–8), 638–648 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing. ACM (1971)Google Scholar
  15. 15.
    D-Wave Systems: Postprocessing Methods on D-Wave Systems (2016)Google Scholar
  16. 16.
    Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large k. In: Proceedings of the 47th Annual ACM Symposium on Theory of Computing, STOC 2015. ACM, New York (2015)Google Scholar
  17. 17.
    Farhi, E., Goldstone, J., Gosset, D., Gutmann, S., Meyer, H.B., Shor, P.: Quantum adiabatic algorithms, small gaps, and different paths. arXiv:0909.4766 (2009)
  18. 18.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv preprint quant-ph/0001106 (2000)Google Scholar
  19. 19.
    Feld, S., et al.: A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer. arXiv preprint arXiv:1811.07403 (2018)
  20. 20.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Finnila, A., Gomez, M., Sebenik, C., Stenson, C., Doll, J.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219(5–6), 343–348 (1994)CrossRefGoogle Scholar
  22. 22.
    Gendreau, M., Hertz, A., Laporte, G.: A Tabu search heuristic for the vehicle routing problem. Manag. Sci. 40(10), 1276–1290 (1994)CrossRefGoogle Scholar
  23. 23.
    Glover, F., Laguna, M.: Tabu search*. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 3261–3362. Springer, New York (2013).  https://doi.org/10.1007/978-1-4419-7997-1_17CrossRefGoogle Scholar
  24. 24.
    Heim, B., Brown, E.W., Wecker, D., Troyer, M.: Designing adiabatic quantum optimization: a case study for the TSP. arXiv:1702.06248 (2017)
  25. 25.
    Hsu, T.J., Jin, F., Seidel, C., Neukart, F., De Raedt, H., Michielsen, K.: Quantum annealing with anneal path control: application to 2-SAT problems with known energy landscapes. arXiv:1810.00194 (2018)
  26. 26.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)CrossRefGoogle Scholar
  27. 27.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random Boolean expressions. Science 264(5163), 1297–1301 (1994)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Klauck, H.: The complexity of quantum disjointness. In: Leibniz International Proceedings in Informatics, vol. 83. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  30. 30.
    Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)CrossRefGoogle Scholar
  31. 31.
    Mandra, S., Zhu, Z., Katzgraber, H.G.: Exponentially biased ground-state sampling of quantum annealing machines with transverse-field driving hamiltonians. Phys. Rev. Lett. 118(7), 070502 (2017)CrossRefGoogle Scholar
  32. 32.
    Marriott, C., Watrous, J.: Quantum Arthur-Merlin games. Comput. Complex. 14(2), 122–152 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    McGeoch, C.C.: Adiabatic quantum computation and quantum annealing: theory and practice. Synth. Lect. Quantum Comput. 5(2), 1–93 (2014)CrossRefGoogle Scholar
  34. 34.
    McGeoch, C.C., Wang, C.: Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In: Proceedings of the ACM International Conference on Computing Frontiers. ACM (2013)Google Scholar
  35. 35.
    Mézard, M., Zecchina, R.: Random k-satisfiability problem: from an analytic solution to an efficient algorithm. Phys. Rev. E 66(5), 056126 (2002)CrossRefGoogle Scholar
  36. 36.
    Monasson, R., Zecchina, R.: Entropy of the k-satisfiability problem. Phys. Rev. Lett. 76(21), 3881 (1996)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic “phase transitions”. Nature 400(6740), 133 (1999)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Morimae, T., Nishimura, H.: Merlinization of complexity classes above BQP. arXiv:1704.01514 (2017)
  39. 39.
    Moylett, D.J., Linden, N., Montanaro, A.: Quantum speedup of the traveling-salesman problem for bounded-degree graphs. Phys. Rev. A 95(3), 032323 (2017)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Neukart, F., Compostella, G., Seidel, C., von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Front. ICT 4, 29 (2017)CrossRefGoogle Scholar
  42. 42.
    Rønnow, T.F., et al.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014)CrossRefGoogle Scholar
  43. 43.
    Somma, R.D., Nagaj, D., Kieferová, M.: Quantum speedup by quantum annealing. Phys. Rev. Lett. 109(5), 050501 (2012)CrossRefGoogle Scholar
  44. 44.
    Strand, J., Przybysz, A., Ferguson, D., Zick, K.: ZZZ coupler for native embedding of MAX-3SAT problem instances in quantum annealing hardware. In: APS Meeting Abstracts (2017)Google Scholar
  45. 45.
    Van Dam, W., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum computation? In: 42nd IEEE Symposium on Foundations of Computer Science. IEEE (2001)Google Scholar
  46. 46.
    Warren, R.H.: Small traveling salesman problems. J. Adv. Appl. Math. 2(2), 101–107 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Gabor
    • 1
    Email author
  • Sebastian Zielinski
    • 1
  • Sebastian Feld
    • 1
  • Christoph Roch
    • 1
  • Christian Seidel
    • 2
  • Florian Neukart
    • 3
  • Isabella Galter
    • 2
  • Wolfgang Mauerer
    • 4
  • Claudia Linnhoff-Popien
    • 1
  1. 1.LMU MunichMunichGermany
  2. 2.Volkswagen Data:LabMunichGermany
  3. 3.Volkswagen Group of AmericaSan FranciscoUSA
  4. 4.OTH Regensburg/Siemens Corporate ResearchRegensburgGermany

Personalised recommendations