# Boosting Quantum Annealing Performance Using Evolution Strategies for Annealing Offsets Tuning

Conference paper

First Online:

## Abstract

In this paper we introduce a novel algorithm to iteratively tune annealing offsets for qubits in a D-Wave 2000Q quantum processing unit (QPU). Using a (1+1)-CMA-ES algorithm, we are able to improve the performance of the QPU by up to a factor of 12.4 in probability of obtaining ground states for small problems, and obtain previously inaccessible (i.e., better) solutions for larger problems. We also make efficient use of QPU samples as a resource, using 100 times less resources than existing tuning methods. The success of this approach demonstrates how quantum computing can benefit from classical algorithms, and opens the door to new hybrid methods of computing.

## Keywords

Quantum computing Quantum annealing Optimization Hybrid algorithms## Supplementary material

## References

- 1.King, J., Yarkoni, S., Nevisi, M.M., Hilton, J.P., McGeoch, C.C.: Benchmarking a quantum annealing processor with the time-to-target metric. arXiv:1508.05087 (2015)
- 2.Bian, Z., Chudak, F., Israel, R.B., Lackey, B., Macready, W.G., Roy, A.: Mapping constrained optimization problems to quantum annealing with application to fault diagnosis. Front. ICT
**3**, 14 (2016)CrossRefGoogle Scholar - 3.Neukart, F., Compostella, G., Seidel, C., von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Front. ICT
**4**, 29 (2017)CrossRefGoogle Scholar - 4.Raymond, J., Yarkoni, S., Andriyash, E.: Global warming: temperature estimation in annealers. Front. ICT
**3**, 23 (2016)CrossRefGoogle Scholar - 5.Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling. arXiv:1506.08479 (2015)
- 6.King, A.D., et al.: Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature
**560**(7719), 456–460 (2018)CrossRefGoogle Scholar - 7.Yarkoni, S., Plaat, A., Bäck, T.: First results solving arbitrarily structured maximum independent set problems using quantum annealing. In: 2018 IEEE Congress on Evolutionary Computation (CEC), (Rio de Janeiro, Brazil), pp. 1184–1190 (2018)Google Scholar
- 8.Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature
**473**, 194–198 (2011)CrossRefGoogle Scholar - 9.Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen.
**15**(10), 3241 (1982)MathSciNetCrossRefGoogle Scholar - 10.Lucas, A.: Ising formulations of many NP problems. Front. Phys.
**2**, 5 (2014)CrossRefGoogle Scholar - 11.Lanting, T., King, A.D., Evert, B., Hoskinson, E.: Experimental demonstration of perturbative anticrossing mitigation using non-uniform driver Hamiltonians. arXiv:1708.03049 (2017)
- 12.Andriyash, E., Bian, Z., Chudak, F., Drew-Brook, M., King, A.D., Macready, W.G., Roy, A.: Boosting integer factoring performance via quantum annealing offsets https://www.dwavesys.com/resources/publications
- 13.Hsu, T.-J., Jin, F., Seidel, C., Neukart, F., Raedt, H.D., Michielsen, K.: Quantum annealing with anneal path control: application to 2-sat problems with known energy landscapes. arXiv:1810.00194 (2018)
- 14.Susa, Y., Yamashiro, Y., Yamamoto, M., Nishimori, H.: Exponential speedup of quantum annealing by inhomogeneous driving of the transverse field. J. Phys. Soc. Jpn.
**87**(2), 023002 (2018)CrossRefGoogle Scholar - 15.Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model. Phys. Rev. E
**58**, 5355–5363 (1998)CrossRefGoogle Scholar - 16.Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation: Advances in the Estimation of Distribution Algorithms, pp. 75–102. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32494-1_4CrossRefGoogle Scholar
- 17.Igel, C., Suttorp, T., Hansen, N.: A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, pp. 453–460. ACM, New York (2006)Google Scholar
- 18.Auger, A., Hansen, N.: Benchmarking the (1+1)-CMA-ES on the BBOB-2009 Noisy Testbed. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO 2009, pp. 2467–2472. ACM, New York (2009)Google Scholar

## Copyright information

© Springer Nature Switzerland AG 2019