Advertisement

Boosting Quantum Annealing Performance Using Evolution Strategies for Annealing Offsets Tuning

  • Sheir YarkoniEmail author
  • Hao Wang
  • Aske Plaat
  • Thomas Bäck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11413)

Abstract

In this paper we introduce a novel algorithm to iteratively tune annealing offsets for qubits in a D-Wave 2000Q quantum processing unit (QPU). Using a (1+1)-CMA-ES algorithm, we are able to improve the performance of the QPU by up to a factor of 12.4 in probability of obtaining ground states for small problems, and obtain previously inaccessible (i.e., better) solutions for larger problems. We also make efficient use of QPU samples as a resource, using 100 times less resources than existing tuning methods. The success of this approach demonstrates how quantum computing can benefit from classical algorithms, and opens the door to new hybrid methods of computing.

Keywords

Quantum computing Quantum annealing Optimization Hybrid algorithms 

Supplementary material

References

  1. 1.
    King, J., Yarkoni, S., Nevisi, M.M., Hilton, J.P., McGeoch, C.C.: Benchmarking a quantum annealing processor with the time-to-target metric. arXiv:1508.05087 (2015)
  2. 2.
    Bian, Z., Chudak, F., Israel, R.B., Lackey, B., Macready, W.G., Roy, A.: Mapping constrained optimization problems to quantum annealing with application to fault diagnosis. Front. ICT 3, 14 (2016)CrossRefGoogle Scholar
  3. 3.
    Neukart, F., Compostella, G., Seidel, C., von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Front. ICT 4, 29 (2017)CrossRefGoogle Scholar
  4. 4.
    Raymond, J., Yarkoni, S., Andriyash, E.: Global warming: temperature estimation in annealers. Front. ICT 3, 23 (2016)CrossRefGoogle Scholar
  5. 5.
    Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling. arXiv:1506.08479 (2015)
  6. 6.
    King, A.D., et al.: Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018)CrossRefGoogle Scholar
  7. 7.
    Yarkoni, S., Plaat, A., Bäck, T.: First results solving arbitrarily structured maximum independent set problems using quantum annealing. In: 2018 IEEE Congress on Evolutionary Computation (CEC), (Rio de Janeiro, Brazil), pp. 1184–1190 (2018)Google Scholar
  8. 8.
    Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473, 194–198 (2011)CrossRefGoogle Scholar
  9. 9.
    Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15(10), 3241 (1982)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)CrossRefGoogle Scholar
  11. 11.
    Lanting, T., King, A.D., Evert, B., Hoskinson, E.: Experimental demonstration of perturbative anticrossing mitigation using non-uniform driver Hamiltonians. arXiv:1708.03049 (2017)
  12. 12.
    Andriyash, E., Bian, Z., Chudak, F., Drew-Brook, M., King, A.D., Macready, W.G., Roy, A.: Boosting integer factoring performance via quantum annealing offsets https://www.dwavesys.com/resources/publications
  13. 13.
    Hsu, T.-J., Jin, F., Seidel, C., Neukart, F., Raedt, H.D., Michielsen, K.: Quantum annealing with anneal path control: application to 2-sat problems with known energy landscapes. arXiv:1810.00194 (2018)
  14. 14.
    Susa, Y., Yamashiro, Y., Yamamoto, M., Nishimori, H.: Exponential speedup of quantum annealing by inhomogeneous driving of the transverse field. J. Phys. Soc. Jpn. 87(2), 023002 (2018)CrossRefGoogle Scholar
  15. 15.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363 (1998)CrossRefGoogle Scholar
  16. 16.
    Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation: Advances in the Estimation of Distribution Algorithms, pp. 75–102. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-32494-1_4CrossRefGoogle Scholar
  17. 17.
    Igel, C., Suttorp, T., Hansen, N.: A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, pp. 453–460. ACM, New York (2006)Google Scholar
  18. 18.
    Auger, A., Hansen, N.: Benchmarking the (1+1)-CMA-ES on the BBOB-2009 Noisy Testbed. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO 2009, pp. 2467–2472. ACM, New York (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sheir Yarkoni
    • 1
    • 2
    Email author
  • Hao Wang
    • 2
  • Aske Plaat
    • 2
  • Thomas Bäck
    • 2
  1. 1.D-Wave Systems Inc.BurnabyCanada
  2. 2.LIACSLeiden UniversityLeidenNetherlands

Personalised recommendations