Skip to main content

Solving Large Maximum Clique Problems on a Quantum Annealer

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11413))

Abstract

Commercial quantum annealers from D-Wave Systems can find high quality solutions of quadratic unconstrained binary optimization problems that can be embedded onto its hardware. However, even though such devices currently offer up to 2048 qubits, due to limitations on the connectivity of those qubits, the size of problems that can typically be solved is rather small (around 65 variables). This limitation poses a problem for using D-Wave machines to solve application-relevant problems, which can have thousands of variables. For the important Maximum Clique problem, this article investigates methods for decomposing larger problem instances into smaller ones, which can subsequently be solved on D-Wave. During the decomposition, we aim to prune as many generated subproblems that don’t contribute to the solution as possible, in order to reduce the computational complexity. The reduction methods presented in this article include upper and lower bound heuristics in conjunction with graph decomposition, vertex and edge extraction, and persistency analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: Graph partitioning and graph clustering. In: 10th DIMACS Implementation Challenge Workshop, 13–14 February 2012. Contemporary Mathematics, vol. 588 (2013)

    Google Scholar 

  2. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. Adv. Dat An Class 5(2) (2011)

    Google Scholar 

  3. Boros, E., Hammer, P.: Pseudo-Boolean optimization. Discret. Appl. Math. 123(1–3), 155–225 (2002)

    Article  MathSciNet  Google Scholar 

  4. Budinich, M.: Exact bounds on the order of the maximum clique of a graph. Discret. Appl. Math. 127(3), 535–543 (2003)

    Article  MathSciNet  Google Scholar 

  5. Carmo, R., Züge, A.: Branch and bound algorithms for the maximum clique problem under a unified framework. J. Braz. Comput. Soc. 18(2), 137–151 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chapuis, G., Djidjev, H., Hahn, G., Rizk, G.: Finding maximum cliques on the D-wave quantum annealer. In: Proceedings of the 2017 ACM International Conference on Computing Frontiers (CF 2017), pp. 1–8 (2017)

    Google Scholar 

  7. Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theor. Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  Google Scholar 

  8. D-Wave: Technical Description of the D-Wave Quantum Processing Unit, 09-1109A-A, 2016 (2016)

    Google Scholar 

  9. D-Wave Systems (2000). Quantum Computing for the Real World Today

  10. Dabrowski, K., Lozin, V., Müller, H., Rautenbach, D.: Parameterized algorithms for the independent set problem in some hereditary graph classes. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 1–9. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19222-7_1

    Chapter  MATH  Google Scholar 

  11. Djidjev, H., Hahn, G., Niklasson, A., Sardeshmukh, V.: Graph partitioning methods for fast parallel quantum molecular dynamics. In: SIAM Workshop on Combinatorial Scientific Computing CSC 2016 (2015)

    Google Scholar 

  12. Elphick, C., Wocjan, P.: Conjectured lower bound for the clique number of a graph. arXiv:1804.03752 (2018)

  13. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungarian Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  14. Giakoumakis, V., Vanherpe, J.: On extended P4-reducible and extended P4-sparse graphs. Theor. Comput. Sci. 180, 269–286 (1997)

    Article  Google Scholar 

  15. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988). https://doi.org/10.1007/978-3-642-78240-4

    Book  MATH  Google Scholar 

  16. Hagberg, A., Schult, D., Swart, P.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of SciPy 2008, pp. 11–15 (2008)

    Google Scholar 

  17. Knuth, D.E.: The sandwich theorem. Electron. J. Comb. 1(A1), 1–49 (1993)

    MathSciNet  Google Scholar 

  18. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory IT–25(1), 1–7 (1979)

    Article  MathSciNet  Google Scholar 

  19. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2(5), 1–27 (2014)

    Google Scholar 

  20. Mandrà, S., Katzgraber, H.: A deceptive step towards quantum speedup detection. Quant. Sci. Technol. 3(04LT01), 1–12 (2018)

    Google Scholar 

  21. Minty, G.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser. B 28(3), 284–304 (1980)

    Article  MathSciNet  Google Scholar 

  22. Pardalos, P.M., Rodgers, G.P.: A branch and bound algorithm for the maximum clique problem. Comput. Oper. Res. 19(5), 363–375 (1992)

    Article  Google Scholar 

  23. Pattabiraman, B., Patwary, M., Gebremedhin, A., Liao, W.K., Choudhary, A.: Fast max-clique finder (2018). http://cucis.ece.northwestern.edu/ projects/MAXCLIQUE

  24. Pattabiraman, B., Patwary, M., Gebremedhin, A., Liao, W.K., Choudhary, A.: Fast algorithms for the maximum clique problem on massive graphs with applications. Internet Math. 11, 421–448 (2015)

    Article  MathSciNet  Google Scholar 

  25. Rao, M.: Solving some NP-complete problems using split decomposition. Discret. Appl. Math. 156(14), 2768–2780 (2008)

    Article  MathSciNet  Google Scholar 

  26. Soto, M., Rossi, A., Sevaux, M.: Three new upper bounds on the chromatic number. Discret. Appl. Math. 159, 2281–89 (2011)

    Article  MathSciNet  Google Scholar 

  27. Stahlke, D.: Python code to compute the Lovasz, Schrijver, and Szegedy numbers for graphs (2013). https://gist.github.com/dstahlke/6895643

  28. Tarjan, R.: Decomposition by clique separators. Discret. Math. 55(2), 221–232 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Research presented in this article was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20180267ER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elijah Pelofske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pelofske, E., Hahn, G., Djidjev, H. (2019). Solving Large Maximum Clique Problems on a Quantum Annealer. In: Feld, S., Linnhoff-Popien, C. (eds) Quantum Technology and Optimization Problems. QTOP 2019. Lecture Notes in Computer Science(), vol 11413. Springer, Cham. https://doi.org/10.1007/978-3-030-14082-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14082-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14081-6

  • Online ISBN: 978-3-030-14082-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics