Solving Quantum Chemistry Problems with a D-Wave Quantum Annealer

  • Michael StreifEmail author
  • Florian Neukart
  • Martin Leib
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11413)


Quantum annealing devices have been subject to various analyses in order to classify their usefulness for practical applications. While it has been successfully proven that such systems can in general be used for solving combinatorial optimization problems, they have not been used to solve chemistry applications. In this paper we apply a mapping, put forward by Xia et al. [25], from a quantum chemistry Hamiltonian to an Ising spin glass formulation and find the ground state energy with a quantum annealer. Additionally we investigate the scaling in terms of needed physical qubits on a quantum annealer with limited connectivity. To the best of our knowledge, this is the first experimental study of quantum chemistry problems on quantum annealing devices. We find that current quantum annealing technologies result in an exponential scaling for such inherently quantum problems and that new couplers are necessary to make quantum annealers attractive for quantum chemistry.


Quantum computing Quantum annealing Quantum chemistry 



We thank VW Group CIO Martin Hofmann and VW Group Region Americas CIO Abdallah Shanti, who enable our research. Any opinions, findings, and conclusions expressed in this paper do not necessarily reflect the views of the Volkswagen Group.


  1. 1.
    Technical description of the D-wave quantum processing unit, 09–1109a-eGoogle Scholar
  2. 2.
    Adachi, S.H., Henderson, M.P.: Application of quantum annealing to training of deep neural networks. arXiv preprint arXiv:1510.06356 (2015)
  3. 3.
    Babbush, R., Berry, D.W., McClean, J.R., Neven, H.: Quantum simulation of chemistry with sublinear scaling to the continuum. arXiv preprint arXiv:1807.09802 (2018)
  4. 4.
    Babbush, R., Love, P.J., Aspuru-Guzik, A.: Adiabatic quantum simulation of quantum chemistry. Sci. Rep. 4, 6603 (2014)CrossRefGoogle Scholar
  5. 5.
    Babbush, R., Wiebe, N., McClean, J., McClain, J., Neven, H., Chan, G.K.: Low depth quantum simulation of electronic structure. arXiv preprint arXiv:1706.00023 (2017)
  6. 6.
    Barends, R., et al.: Digitized adiabatic quantum computing with a superconducting circuit. Nature 534(7606), 222 (2016)CrossRefGoogle Scholar
  7. 7.
    Debnath, S., Linke, N.M., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Demonstration of a small programmable quantum computer with atomic qubits. Nature 536(7614), 63 (2016)CrossRefGoogle Scholar
  8. 8.
    DiCarlo, L., et al.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460(7252), 240 (2009)CrossRefGoogle Scholar
  9. 9.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hempel, C., et al.: Quantum chemistry calculations on a trapped-ion quantum simulator. arXiv preprint arXiv:1803.10238 (2018)
  11. 11.
    Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194 (2011)CrossRefGoogle Scholar
  12. 12.
    Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242 (2017)CrossRefGoogle Scholar
  13. 13.
    Kitaev, A.Y.: Quantum measurements and the Abelian stabilizer problem. arXiv preprint quant-ph/9511026 (1995)Google Scholar
  14. 14.
    Kivlichan, I.D., et al.: Quantum simulation of electronic structure with linear depth and connectivity. Phys. Rev. Lett. 120(11), 110501 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lanyon, B.P., et al.: Towards quantum chemistry on a quantum computer. Nat. Chem. 2(2), 106 (2010)CrossRefGoogle Scholar
  16. 16.
    Levit, A., Crawford, D., Ghadermarzy, N., Oberoi, J.S., Zahedinejad, E., Ronagh, P.: Free energy-based reinforcement learning using a quantum processor. arXiv preprint arXiv:1706.00074 (2017)
  17. 17.
    McClean, J.R., et al.: OpenFermion: the electronic structure package for quantum computers. arXiv preprint arXiv:1710.07629 (2017)
  18. 18.
    Neukart, F., Von Dollen, D., Compostella, G., Seidel, C., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Front. ICT 4, 29 (2017)CrossRefGoogle Scholar
  19. 19.
    Neukart, F., Von Dollen, D., Seidel, C.: Quantum-assisted cluster analysis on a quantum annealing device. Front. Phys. 6, 55 (2018)CrossRefGoogle Scholar
  20. 20.
    O’Malley, P., et al.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6(3), 031007 (2016)Google Scholar
  21. 21.
    Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nature Commun. 5, 4213 (2014)CrossRefGoogle Scholar
  22. 22.
    Reagor, M., et al.: Demonstration of universal parametric entangling gates on a multi-qubit lattice. Sci. Adv. 4(2), eaao3603 (2018)CrossRefGoogle Scholar
  23. 23.
    Seeley, J.T., Richard, M.J., Love, P.J.: The Bravyi-Kitaev transformation for quantum computation of electronic structure. J. Chem. Phys. 137(22), 224109 (2012)CrossRefGoogle Scholar
  24. 24.
    Whitfield, J.D., Biamonte, J., Aspuru-Guzik, A.: Simulation of electronic structure Hamiltonians using quantum computers. Mol. Phys. 109(5), 735–750 (2011)CrossRefGoogle Scholar
  25. 25.
    Xia, R., Bian, T., Kais, S.: Electronic structure calculations and the Ising Hamiltonian. J. Phys. Chem. B 122, 3384–3395 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Data:Lab, Volkswagen GroupMünchenGermany
  2. 2.LIACS, Leiden UniversityLeidenNetherlands
  3. 3.Volkswagen Group of AmericaSan FranciscoUSA

Personalised recommendations