Skip to main content

The Normal Mitral Valve

  • Chapter
  • First Online:
Textbook of Three-Dimensional Echocardiography

Abstract

Accurate characterization of the normal anatomy and function of the mitral valve apparatus is key to understand the pathophysiology of mitral valve diseases. Echocardiography is the first-line imaging technique used for the assessment of the mitral valve morphology and function. During the last five decades, echocardiography has evolved from M-mode to two-dimensional, and then three-dimensional imaging, introducing a new era in the cardiovascular imaging. The use of newly matrix array transthoracic and transesophageal transducers bestowed unique possibilities to assess the mitral valve apparatus in all three or four-dimensions (including time), without the need of offline reconstruction. Heart imagers were able to obtain for the first time “en face” visualization of the mitral valve from the atrial perspective, as only the surgeons were previously able to see it, and to describe in detail the complex anatomy of the valvular and sub-valvular apparatus.

This chapter summarizes the current status of the acquisition and display of the mitral valve using three-dimensional transthoracic and transesophageal echocardiography and describes the normal anatomy of the mitral valve apparatus components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badano LP, Boccalini F, Muraru D, et al. Current clinical applications of transthoracic three-dimensional echocardiography. J Cardiovasc Ultrasound. 2012;20:1–22.

    Article  Google Scholar 

  2. Lang RM, Mor-Avi V, Sugeng L, Nieman PS, Sahn DJ. Three-dimensional echocardiography: the benefits of the additional dimension. J Am Coll Cardiol. 2006;48:2053–69.

    Article  Google Scholar 

  3. Lang RM, Tsang W, Weinert L, Mor-Avi V, Chandra S. Valvular heart disease. The value of 3-dimensional echocardiography. J Am Coll Cardiol. 2011;58:1933–44.

    Article  Google Scholar 

  4. Caiani EG, Fusini L, Veronesi F, et al. Quantification of mitral annulus dynamic morphology in patients with mitral valve prolapse undergoing repair and annuloplasty during a 6-month follow-up. Eur J Echocardiogr. 2011;12:375–83.

    Article  Google Scholar 

  5. Grewal J, Suri R, Mankad S, et al. Mitral annular dynamics in myxomatous valve disease: new insights with real-time 3-dimensional echocardiography. Circulation. 2010;121:1423–31.

    Article  Google Scholar 

  6. Topilsky Y, Vaturi O, Watanabe N, et al. Real-time 3-dimensional dynamics of functional mitral regurgitation: a prospective quantitative and mechanistic study. J Am Heart Assoc. 2013;2:e000039.

    Article  Google Scholar 

  7. Thavendiranathan P, Phelan D, Thomas JD, Flamm SD, Marwick TH. Quantitative assessment of mitral regurgitation: validation of new methods. J Am Coll Cardiol. 2012;60:1470–83.

    Article  Google Scholar 

  8. Thavendiranathan P, Phelan D, Collier P, Thomas JD, Flamm SD, Marwick TH. Quantitative assessment of mitral regurgitation: how best to do it. JACC Cardiovasc Imaging. 2012;5:1161–75.

    Article  Google Scholar 

  9. Cavalcante JL, Rodriguez LL, Kapadia S, Tuzcu EM, Stewart WJ. Role of echocardiography in percutaneous mitral valve interventions. JACC Cardiovasc Imaging. 2012;5:733–46.

    Article  Google Scholar 

  10. Altiok E, Becker M, Hamada S, et al. Real-time 3D TEE allows optimized guidance of percutaneous edge-to-edge repair of the mitral valve. JACC Cardiovasc Imaging. 2010;3:1196–8.

    Article  Google Scholar 

  11. Wunderlich NC, Siegel RJ. Peri-interventional echo assessment for the MitraClip procedure. Eur Heart J Cardiovasc Imaging. 2013;14:935–49.

    Article  Google Scholar 

  12. Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13:1–46.

    Article  Google Scholar 

  13. Mor-Avi V, Sugeng L, Lang RM. Real-time 3-dimensional echocardiography: an integral component of the routine echocardiographic examination in adult patients? Circulation. 2009;119:314–29.

    Article  Google Scholar 

  14. Mihaila S, Muraru D, Piasentini E, et al. Quantitative analysis of mitral annular geometry and function in healthy volunteers using transthoracic three-dimensional echocardiography. J Am Soc Echocardiogr. 2014;27:846–57.

    Article  Google Scholar 

  15. Pepi M, Tamborini G, Maltagliati A, et al. Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol. 2006;48:2524–30.

    Article  Google Scholar 

  16. Sugeng L, Coon P, Weinert L, et al. Use of real-time 3-dimensional transthoracic echocardiography in the evaluation of mitral valve disease. J Am Soc Echocardiogr. 2006;19:413–21.

    Article  Google Scholar 

  17. Miglioranza MH, Muraru D, Mihaila S, Haertel JC, Iliceto S, Badano LP. Isolated anterior mitral valve leaflet cleft: 3D transthoracic echocardiography-guided surgical strategy. Arq Bras Cardiol. 2015;104:e49–52.

    PubMed  PubMed Central  Google Scholar 

  18. Obase K, Jeevanandam V, Saito K, et al. Visualization and measurement of mitral valve chordae tendineae using three-dimensional transesophageal echocardiography from the transgastric approach. J Am Soc Echocardiogr. 2015;28:449–54.

    Article  Google Scholar 

  19. Ho SY. Anatomy of the mitral valve. Heart. 2002;88(Suppl 4):iv5–10.

    PubMed  PubMed Central  Google Scholar 

  20. Levine RA, Durst R. Mitral valve prolapse: a deeper look. JACC Cardiovasc Imaging. 2008;1:304–6.

    Article  Google Scholar 

  21. Silbiger JJ, Bazaz R. Contemporary insights into the functional anatomy of the mitral valve. Am Heart J. 2009;158:887–95.

    Article  Google Scholar 

  22. Mantovani F, Clavel MA, Vatury O, et al. Cleft-like indentations in myxomatous mitral valves by three-dimensional echocardiographic imaging. Heart. 2015;101:1111–7.

    Article  CAS  Google Scholar 

  23. Quill JL, Hill AJ, Laske TG, Alfieri O, Iaizzo PA. Mitral leaflet anatomy revisited. J Thorac Cardiovasc Surg. 2009;137:1077–81.

    Article  Google Scholar 

  24. Grewal J, Mankad S, Freeman WK, Click RL, Suri RM, Abel MD, et al. Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J Am Soc Echocardiogr. 2009;22(1):34–41.

    Article  Google Scholar 

  25. Zamorano J, Cordeiro P, Sugeng L, et al. Real-time three-dimensional echocardiography for rheumatic mitral stenosis evaluation: an accurate and novel approach. J Am Coll Cardiol. 2004;43:2091–6.

    Article  Google Scholar 

  26. Beaudoin J, Thai WE, Wai B, Handschumacher MD, Levine RA, Truong QA. Assessment of mitral valve adaptation with gated cardiac computed tomography: validation with three-dimensional echocardiography and mechanistic insight to functional mitral regurgitation. Circ Cardiovasc Imaging. 2013;6(5):784–9.

    Article  Google Scholar 

  27. Levine RA, Handschumacher MD, Sanfilippo AJ, et al. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989;80:589–98.

    Article  CAS  Google Scholar 

  28. Kaplan SR, Bashein G, Sheehan FH, et al. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am Heart J. 2000;139:378–87.

    Article  CAS  Google Scholar 

  29. Salgo IS, Gorman JH 3rd, Gorman RC, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 2002;106:711–7.

    Article  Google Scholar 

  30. Silbiger JJ. Anatomy, mechanics, and pathophysiology of the mitral annulus. Am Heart J. 2012;164:163–76.

    Article  Google Scholar 

  31. Angelini A, Ho SY, Anderson RH, Davies MJ, Becker AE. A histological study of the atrioventricular junction in hearts with normal and prolapsed leaflets of the mitral valve. Br Heart J. 1988;59:712–6.

    Article  CAS  Google Scholar 

  32. Pai RG, Varadarajan P, Tanimoto M. Effect of atrial fibrillation on the dynamics of mitral annular area. J Heart Valve Dis. 2003;12(1):31–7.

    PubMed  Google Scholar 

  33. Ormiston JA, Shah PM, Tei C, Wong M. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation. 1981;64:113–20.

    Article  CAS  Google Scholar 

  34. Ormiston JA, Shah PM, Tei C, Wong M. Size and motion of the mitral valve annulus in man. II. Abnormalities in mitral valve prolapse. Circulation. 1982;65:713–9.

    Article  CAS  Google Scholar 

  35. Mihaila S, Muraru D, Miglioranza MH, et al. Normal mitral annulus dynamics and its relationships with left ventricular and left atrial function. Int J Cardiovasc Imaging. 2015;31:279–90.

    Article  Google Scholar 

  36. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017;38:2739–91.

    Article  Google Scholar 

  37. Veronesi F, Caiani EG, Sugeng L, et al. Effect of mitral valve repair on mitral-aortic coupling: a real-time three-dimensional transesophageal echocardiography study. J Am Soc Echocardiogr. 2012;25:524–31.

    Article  Google Scholar 

  38. Kwan J, Shiota T, Agler DA, et al. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study. Circulation. 2003;107:1135–40.

    Article  Google Scholar 

  39. Kwan J, Qin JX, Popovic ZB, Agler DA, Thomas JD, Shiota T. Geometric changes of mitral annulus assessed by real-time 3-dimensional echocardiography: becoming enlarged and less nonplanar in the anteroposterior direction during systole in proportion to global left ventricular systolic function. J Am Soc Echocardiogr. 2004;17:1179–84.

    Article  Google Scholar 

  40. Veronesi F, Corsi C, Sugeng L, et al. Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2008;21:347–54.

    Article  Google Scholar 

  41. Tsang W, Veronesi F, Sugeng L, et al. Mitral valve dynamics in severe aortic stenosis before and after aortic valve replacement. J Am Soc Echocardiogr. 2013;26:606–14.

    Article  Google Scholar 

  42. Tsang W, Meineri M, Hahn RT, et al. A three-dimensional echocardiographic study on aortic-mitral coupling in transcatheter aortic valve replacement. Eur Heart J Cardiovasc Imaging. 2013;14:950–6.

    Article  Google Scholar 

  43. Kwan J, Jeon MJ, Kim DH, Park KS, Lee WH. Does the mitral annulus shrink or enlarge during systole? A real-time 3D echocardiography study. J Korean Med Sci. 2009;24:203–8.

    Article  Google Scholar 

  44. Anwar AM, Soliman OI, Nemes A, et al. Assessment of mitral annulus size and function by real-time 3-dimensional echocardiography in cardiomyopathy: comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 2007;20:941–8.

    Article  Google Scholar 

  45. Anwar AM, Soliman OI, ten Cate FJ, et al. True mitral annulus diameter is underestimated by two-dimensional echocardiography as evidenced by real-time three-dimensional echocardiography and magnetic resonance imaging. Int J Cardiovasc Imaging. 2007;23:541–7.

    Article  Google Scholar 

  46. Mihaila S, Muraru D, Miglioranza MH, et al. Relationship between mitral annulus function and mitral regurgitation severity and left atrial remodelling in patients with primary mitral regurgitation. Eur Heart J Cardiovasc Imaging. 2016;17:918–29.

    Article  Google Scholar 

  47. Watanabe N, Ogasawara Y, Yamaura Y, Kawamoto T, Akasaka T, Yoshida K. Geometric deformity of the mitral annulus in patients with ischemic mitral regurgitation: a real-time three-dimensional echocardiographic study. J Heart Valve Dis. 2005;14(4):447–52.

    PubMed  Google Scholar 

  48. Watanabe N, Ogasawara Y, Yamaura Y, et al. Mitral annulus flattens in ischemic mitral regurgitation: geometric differences between inferior and anterior myocardial infarction: a real-time 3-dimensional echocardiographic study. Circulation. 2005;112(9 Suppl):I458–62.

    PubMed  Google Scholar 

  49. Chiechi MA, Lees WM, Thompson R. Functional anatomy of the normal mitral valve. J Thorac Surg. 1956;32:378–98.

    CAS  PubMed  Google Scholar 

  50. Rusted IE, Scheifley CH, Edwards JE. Studies of the mitral valve. I. Anatomic features of the normal mitral valve and associated structures. Circulation. 1952;6:825–31.

    Article  CAS  Google Scholar 

  51. Cochran RP, Kunzelman KS. Effect of papillary muscle position on mitral valve function: relationship to homografts. Ann Thorac Surg. 1998;66(6 Suppl):S155–61.

    Article  CAS  Google Scholar 

  52. Nielsen SL, Nygaard H, Fontaine AA, et al. Papillary muscle misalignment causes multiple mitral regurgitant jets: an ambiguous mechanism for functional mitral regurgitation. J Heart Valve Dis. 1999;8:551–64.

    CAS  PubMed  Google Scholar 

  53. Levine RA, Vlahakes GJ, Lefebvre X, et al. Papillary muscle displacement causes systolic anterior motion of the mitral valve. Experimental validation and insights into the mechanism of subaortic obstruction. Circulation. 1995;91:1189–95.

    Article  CAS  Google Scholar 

  54. Boltwood CM, Tei C, Wong M, Shah PM. Quantitative echocardiography of the mitral complex in dilated cardiomyopathy: the mechanism of functional mitral regurgitation. Circulation. 1983;68(3):498–508.

    Article  CAS  Google Scholar 

  55. Chaput M, Handschumacher MD, Tournoux F, et al. Mitral leaflet adaptation to ventricular remodeling: occurrence and adequacy in patients with functional mitral regurgitation. Circulation. 2008;118:845–52.

    Article  Google Scholar 

  56. He S, Fontaine AA, Schwammenthal E, Yoganathan AP, Levine RA. Integrated mechanism for functional mitral regurgitation: leaflet restriction versus coapting force: in vitro studies. Circulation. 1997;96:1826–34.

    Article  CAS  Google Scholar 

  57. Lee AP, Acker M, Kubo SH, et al. Mechanisms of recurrent functional mitral regurgitation after mitral valve repair in nonischemic dilated cardiomyopathy: importance of distal anterior leaflet tethering. Circulation. 2009;119:2606–14.

    Article  Google Scholar 

  58. Nagasaki M, Nishimura S, Ohtaki E, et al. The echocardiographic determinants of functional mitral regurgitation differ in ischemic and non-ischemic cardiomyopathy. Int J Cardiol. 2006;108:171–6.

    Article  Google Scholar 

  59. Otsuji Y, Handschumacher MD, Schwammenthal E, et al. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation. 1997;96:1999–2008.

    Article  CAS  Google Scholar 

  60. Sakai T, Okita Y, Ueda Y, et al. Distance between mitral annulus and papillary muscles: anatomic study in normal human hearts. J Thorac Cardiovasc Surg. 1999;118:636–41.

    Article  CAS  Google Scholar 

  61. Theriault-Lauzier P, Mylotte D, Dorfmeister M, et al. Quantitative multi-slice computed tomography assessment of the mitral valve complex for transcatheter mitral valve interventions part 1: systematic measurement methodology and inter-observer variability. EuroIntervention. 2016;12:e1011–20.

    Article  Google Scholar 

  62. Hsuan CF, Yu HY, Tseng WK, et al. Quantitation of the mitral tetrahedron in patients with ischemic heart diseases using real-time three-dimensional echocardiography to evaluate the geometric determinants of ischemic mitral regurgitation. Clin Cardiol. 2013;36:286–92.

    Article  Google Scholar 

  63. Veronesi F, Corsi C, Sugeng L, et al. Quantification of mitral aparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2008;21:347–54.

    Article  Google Scholar 

  64. Otsuji Y, Kumanohoso T, Yoshifuku S, et al. Isolated annular dilation does not usually cause important functional mitral regurgitation. Comparison between patients with lone atrial fibrillation and those with idiopathic or ischemic cardiomyoapthy. J Am Coll Cardiol. 2002;39:1651–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Electronic Supplementary Material

Single-beat 3DE full-volume of the mitral valve and left atrial structures obtained using transesophageal echocardiography. Despite the low temporal resolution of 5 vps, the quality of the data set allows precise assessment of the anatomy of the let atrial structures (AVI 2483 kb)

(Left) Mitral valve visualized from the left atrial perspective (so called “surgical view”) (AVI 14245 kb)

(Right) The mitral valve visualized from the left ventricular perspective (AVI 13411 kb)

(Left) Multibeat 3DE acquisition of a large data set to assess the relationships of the mitral valve with adjacent cardiac structures (aorta, interatrial septum and left atrial appendage) (AVI 6638 kb)

(Right) The same data set cropped with a longitudinal plane passing through the aortic valve and the center on the mitral valve (AVI 6643 kb)

Full-volume, multibeat 3DE transthoracic acquisition to visualize the mitral valve from the ventricular perspective (AVI 5384 kb)

Triplane acquisition of the regurgitant jet of a mitral valve from a single cardiac beat to visualize both the direction and extension of the jet in the left atrium, and to measure the size of the vena contracta (AVI 3973 kb)

Full volume 3DE data set of the left ventricle obtained with transthoracic echocardiography and cropped in a longitudinal axis to visualize both papillary muscles (AVI 7009 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baldea, S.M., Vinereanu, D., Lang, R.M. (2019). The Normal Mitral Valve. In: Badano, L., Lang, R., Muraru, D. (eds) Textbook of Three-Dimensional Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-030-14032-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14032-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14030-4

  • Online ISBN: 978-3-030-14032-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics