Skip to main content

Theory of Harmonic Balance

  • Chapter
  • First Online:
Harmonic Balance for Nonlinear Vibration Problems

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

Harmonic Balance relies on the representation of time-periodic variables as Fourier series. Hence, we first compile useful definitions, notation, and theory of Fourier analysis. Next, we mathematically formulate the problem of finding periodic solutions of differential equation systems. We then describe the weighted residual approach, and identify Harmonic Balance and its relatives as special cases of this general approach. Finally, we distinguish important variants of Harmonic Balance and summarize the currently available convergence theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The names Fourier operators or Fourier matrices seem suitable, too. However, the former is already used for the kernel of the Fredholm integral of the first kind, and the Fourier matrix commonly denotes the matrix expressing the discrete Fourier transform. As with the robot toys, the Fourier transformers contain more than meets the eye. We can easily shift about their individual parts (elements of these vectors and matrices) to the desired representation.

  2. 2.

    Note that to make Eq. (2.36) equivalent to Eq. (2.32), we could require the orthogonality with respect to all weight functions in the admissible function space.

  3. 3.

    The method is named after the Soviet engineer and mathematician Boris Galerkin. In Soviet literature, this method is known as Bubnov–Galerkin method, whereas Galerkin method refers to the more general case where ansatz and weight functions are not identical.

  4. 4.

    Floquet multipliers will be formally introduced in Sect. 3.6.

References

  1. J.P. Boyd, Chebyshev and Fourier Spectral Methods (Courier Corporation, 2001). ISBN: 0486411834

    Google Scholar 

  2. R.L. Herman, An Introduction to Fourier Analysis (Chapman and Hall/CRC, 2016). ISBN: 1498773710

    Google Scholar 

  3. W.-J. Kim, N.C. Perkins, Harmonic balance/Galerkin method for non-smooth dynamic systems. J. Sound Vib. 261(2), 213–224 (2003). https://doi.org/10.1016/S0022-460X(02)00949-5

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Laxalde, F. Thouverez, Complex non-linear modal analysis for mechanical systems: application to turbomachinery bladings with friction interfaces. J. Sound Vib. 322(4–5), 1009–1025 (2009). https://doi.org/10.1016/j.jsv.2008.11.044

    Article  Google Scholar 

  5. S. Nacivet et al., A dynamic lagrangian frequency-time method for the vibration of dry-friction-damped systems. J. Sound Vib. 265(1), 201–219 (2003). https://doi.org/10.1016/S0022-460X(02)01447-5

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Salles et al., Dual time stepping algorithms with the high order harmonic balance method for contact interfaces with fretting-wear. J. Eng. Gas Turbines Power 134(3), 032503-7 (2011). https://doi.org/10.1115/1.4004236

  7. A. Stokes, On the approximation of nonlinear oscillations. J. Differ. Equ. 12(3), 535–558 (1972). ISSN: 0022-0396. https://doi.org/10.1016/0022-0396(72)90024-1

  8. E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23(1), 1–10 (1986). ISSN: 0036-1429. https://doi.org/10.1137/0723001

  9. M. Urabe, Galerkin’s procedure for nonlinear periodic systems. Arch. Rat. Mech. Anal. 20(2), 120–152(1965). ISSN: 0003-9527

    Google Scholar 

  10. M. Urabe, A. Reiter, Numerical computation of nonlinear forced oscillations by Galerkin’s procedure. J. Math. Anal. Appl. 14(1), 107–140 (1966). ISSN: 0022-247X

    Google Scholar 

  11. P. Vigué et al., Assessment of the harmonic balance method on a self-oscillating one-degree-of-freedom system with regularized friction. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4102-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Krack .

Appendix: Fourier Transformers

Appendix: Fourier Transformers

The Fourier transformers allow compact and unified notation of Fourier analysis. In this appendix, we derive the Fourier transformers for the general case of vector-valued functions. To distinguish between complex-exponential and sine–cosine Fourier series representations, we use the indices \(\left( {h}\right) _{\mathrm {ce}}\) and \(\left( {h}\right) _{\mathrm {sc}}\), respectively. For instance, \(\varvec{h}_{H}\) in the unified notation is expressed as \(\varvec{h}_{\mathrm {ce},H}\) in the complex-exponential representation and as \(\varvec{h}_{\mathrm {sc},H}\) in the sine–cosine representation.

Kronecker Product

To express the Fourier transformers for vector-valued functions in a compact way, the Kronecker product is particularly useful. Consider two matrices \(\varvec{A},\varvec{B}\), where \(\varvec{A}\) has dimension \(m\times n\). The Kronecker product is then defined as the matrix

$$\begin{aligned} {\varvec{A}} \otimes {\varvec{B}} = \left[ \begin{array}{ccc} a_{11}\varvec{B} &{} \cdots &{} a_{1n}\varvec{B} \\ \vdots &{} \ddots &{} \vdots \\ a_{m1}\varvec{B} &{} \cdots &{} a_{mn}\varvec{B}\end{array}\right] \,,\end{aligned}$$
(2.55)

where \(a_{ij}\) is the element of \(\varvec{A}\) in the i-th row and j-th column.

The Kronecker product is bilinear and associative,

$$\begin{aligned} \varvec{A}\otimes \left( \varvec{B}+\varvec{C}\right)&= \varvec{A}\otimes \varvec{B} + \varvec{A}\otimes \varvec{C}\,,\end{aligned}$$
(2.56)
$$\begin{aligned} \left( \varvec{A} + \varvec{B}\right) \otimes \varvec{C}&= \varvec{A}\otimes \varvec{C} + \varvec{B}\otimes \varvec{C}\,,\end{aligned}$$
(2.57)
$$\begin{aligned} \left( \alpha \varvec{A}\right) \otimes \varvec{B}&= \varvec{A}\otimes \left( \alpha \varvec{B}\right) = \alpha \left( \varvec{A}\otimes \varvec{B}\right) \,,\end{aligned}$$
(2.58)
$$\begin{aligned} \left( \varvec{A}\otimes \varvec{B}\right) \otimes \varvec{C}&= \varvec{A}\otimes \left( \varvec{B} \otimes \varvec{C}\right) \,,\end{aligned}$$
(2.59)

but noncommutative, i.e., \(\varvec{A}\otimes \varvec{B}\ne \varvec{B}\otimes \varvec{A}\), in general. We will also use the mixed-product property,

$$\begin{aligned} \left( \varvec{A} \otimes \varvec{B}\right) \left( \varvec{C} \otimes \varvec{D}\right) = \left( \varvec{A}\varvec{C}\right) \otimes \left( \varvec{B}\varvec{D}\right) \,.\end{aligned}$$
(2.60)

Herein, we presume that the inner dimensions of the matrices are such that the products \(\varvec{A}\varvec{C}\) and \(\varvec{B}\varvec{D}\) can be calculated.

We will often use Kronecker products where one of the factors is the identity matrix. Using the identity or, more generally, a diagonal matrix in a Kronecker product results in a sparse matrix (containing many zero elements). This should be taken into account when implementing linear algebra operations in a computationally efficient way.

Complex-Exponential Representation

In accordance with Eq. (2.25), we follow the truncated Fourier series \(\varvec{f}_H(t)\) of a vector-valued function \(\varvec{f}(t):\mathbb R\rightarrow \mathbb R^{n_f}\) from the definition in Eq. (2.1) as follows:

$$\begin{aligned} \varvec{f}_H(t)&= \sum \limits _{k=-H}^H \hat{\varvec{f}}(k){\mathrm {e}}^{{\mathrm {i}}k\varOmega t} \nonumber \\&= \left[ \begin{array}{ccccc} {\mathrm {e}}^{-{\mathrm {i}}H\varOmega t}\varvec{I}_{n_f}~&~\ldots ~&~\varvec{I}_{n_f}~&~\ldots ~&~ {\mathrm {e}}^{{\mathrm {i}}H\varOmega t}\varvec{I}_{n_f}\end{array}\right] \underbrace{\left[ \begin{array}{c} \hat{\varvec{f}}(-H) \\ \vdots \\ \hat{\varvec{f}}(0) \\ \vdots \\ \hat{\varvec{f}}(H)\end{array}\right] }_{\hat{\varvec{f}}_{\mathrm {ce},H}}\nonumber \\&= \underbrace{\overbrace{\left[ \begin{array}{ccccc} {\mathrm {e}}^{-{\mathrm {i}}H\varOmega t}&\ldots&1&\ldots&{\mathrm {e}}^{{\mathrm {i}}H\varOmega t}\end{array}\right] }^{\check{\varvec{h}}_{\mathrm {ce},H}(\varOmega t)} \otimes \varvec{I}_{n_f}}_{\varvec{h}_{\mathrm {ce},H}(\varOmega t)} \hat{\varvec{f}}_{\mathrm {ce},H}\,. \end{aligned}$$
(2.61)

As mentioned before, \(\check{\varvec{h}}_H\) refers to the one-dimensional case, whereas \(\varvec{h}_H\) refers to the \({n_f}\)-dimensional case, and \(\varvec{I}_{n_f}\) is the identity matrix of dimension \({n_f}\).

In accordance with Eq. (2.26), we follow the Fourier coefficients from Eq. (2.2) as

$$\begin{aligned} \hat{\varvec{f}}_{\mathrm {ce},H} = \left[ \begin{array}{c} \hat{\varvec{f}}(-H) \\ \vdots \\ \hat{\varvec{f}}(0) \\ \vdots \\ \hat{\varvec{f}}(H)\end{array}\right]&= \frac{1}{T}\int \limits _0^T \left[ \begin{array}{c} \varvec{f}(t) {\mathrm {e}}^{{\mathrm {i}}H\varOmega t} \\ \vdots \\ \varvec{f}(t) \\ \vdots \\ \varvec{f}(t) {\mathrm {e}}^{-{\mathrm {i}}H\varOmega t} \end{array}\right] {\mathrm {d}}t \nonumber \\&= \frac{1}{T}\int \limits _0^T \underbrace{\overbrace{\left[ \begin{array}{c} {\mathrm {e}}^{{\mathrm {i}}H\varOmega t} \\ \vdots \\ 1 \\ \vdots \\ {\mathrm {e}}^{-{\mathrm {i}}H\varOmega t}\end{array}\right] }^{\check{\varvec{h}}_{\mathrm {ce},H}^*(\varOmega t)} \otimes \varvec{I}_{n_f}}_{\varvec{h}_{\mathrm {ce},H}^*(\varOmega t)} \varvec{f}(t) {\mathrm {d}}t \end{aligned}$$
(2.62)
$$\begin{aligned}&= \langle \varvec{h}_{\mathrm {ce},H}^*, \varvec{f}\rangle \,. \end{aligned}$$
(2.63)

Note that \(\check{\varvec{h}}_{\mathrm {ce},H}^*(\varOmega t) = \overline{\check{\varvec{h}}}_{\mathrm {ce},H}^{\mathrm T}(\varOmega t)\), and thus \(\varvec{h}_{\mathrm {ce},H}^*(\varOmega t) = \overline{\varvec{h}}_{\mathrm {ce},H}^{\mathrm T}(\varOmega t) \).

From Eqs. (2.27), (2.1), and (2.19), we can follow

$$\begin{aligned} \tilde{\varvec{f}}_N = \left[ \begin{array}{c} \tilde{\varvec{f}}(0) \\ \vdots \\ \tilde{\varvec{f}}(N-1)\end{array}\right] \approx \underbrace{\overbrace{\left[ \begin{array}{ccc} {\mathrm {e}}^{{\mathrm {i}}(-H)\frac{2\pi }{N}(0)} &{} \cdots &{} {\mathrm {e}}^{{\mathrm {i}}(+H)\frac{2\pi }{N}(0)}\\ \vdots &{} &{} \vdots \\ {\mathrm {e}}^{{\mathrm {i}}(-H)\frac{2\pi }{N}(N-1)} &{} \cdots &{} {\mathrm {e}}^{{\mathrm {i}}(+H)\frac{2\pi }{N}(N-1)}\end{array}\right] }^{\check{\varvec{E}}_{\mathrm {ce},NH}} \otimes \varvec{I}_{n_f}}_{\varvec{E}_{\mathrm {ce},NH}} \left[ \begin{array}{c} \hat{\varvec{f}}(-H) \\ \vdots \\ \hat{\varvec{f}}(0) \\ \vdots \\ \hat{\varvec{f}}(H)\end{array}\right] \,.\end{aligned}$$
(2.64)

Equality, \(\tilde{\varvec{f}}_N = \varvec{E}_{\mathrm {ce},NH}\hat{\varvec{f}}_{\mathrm {ce},H}\), holds if \(\varvec{f}(t)=\varvec{f}_H(t)\). Note that the n-th row of \( \check{\varvec{E}}_{\mathrm {ce},NH}\) is the vector \(\check{\varvec{h}}_{\mathrm {ce},H}\) evaluated at \(\varOmega t_n= 2\pi n/N\).

From Eqs. (2.28) and (2.20), we can follow analogously

$$\begin{aligned} \hat{\varvec{f}}_{\mathrm {ce},H} = \left[ \begin{array}{c} \hat{\varvec{f}}(-H) \\ \vdots \\ \hat{\varvec{f}}(0) \\ \vdots \\ \hat{\varvec{f}}(H)\end{array}\right] \approx \underbrace{\overbrace{\frac{1}{N} \left[ \begin{array}{ccc} {\mathrm {e}}^{-{\mathrm {i}}(-H)\frac{2\pi }{N}(0)} &{} \cdots &{} {\mathrm {e}}^{-{\mathrm {i}}(-H)\frac{2\pi }{N}(N-1)}\\ \vdots &{} &{} \vdots \\ {\mathrm {e}}^{-{\mathrm {i}}(+H)\frac{2\pi }{N}(0)} &{} \cdots &{} {\mathrm {e}}^{-{\mathrm {i}}(+H)\frac{2\pi }{N}(N-1)}\end{array}\right] }^{\check{\varvec{E}}_{\mathrm {ce},HN}^*} \otimes \varvec{I}_{n_f}}_{\varvec{E}_{\mathrm {ce},HN}^*} \left[ \begin{array}{c} \tilde{\varvec{f}}(0) \\ \vdots \\ \tilde{\varvec{f}}(N-1)\end{array}\right] \,.\end{aligned}$$
(2.65)

Equality, \(\hat{\varvec{f}}_{\mathrm {ce},H} = \varvec{E}_{\mathrm {ce},HN}^*\tilde{\varvec{f}}_{N}\), holds if, in addition to \(\varvec{f}(t)=\varvec{f}_H(t)\), \(N\ge 2H+1\). Note that \(\check{\varvec{E}}_{\mathrm {ce},NH}^* = \overline{\check{\varvec{E}}} ^{\mathrm T}_{\mathrm {ce},NH}/N\), and thus \(\varvec{E}_{\mathrm {ce},NH}^* = \overline{\varvec{E}} ^{\mathrm T}_{\mathrm {ce},NH}/N\).

In accordance with Eq. (2.29), the first-order time derivative of a truncated Fourier series is expressed as

$$\begin{aligned} \dot{\varvec{f}}_H&= \frac{{\mathrm {d}}}{{\mathrm {d}}t} \sum \limits _{k=-H}^H \hat{\varvec{f}}(k){\mathrm {e}}^{{\mathrm {i}}k\varOmega t} \\&= \sum \limits _{k=-H}^H {\mathrm {i}}k\varOmega \hat{\varvec{f}}(k){\mathrm {e}}^{{\mathrm {i}}k\varOmega t} \\&= \varvec{h}_{\mathrm {ce},H}(\varOmega t) \varOmega \varvec{\nabla }_{\mathrm {ce}} \hat{\varvec{f}}_{\mathrm {ce},H}\,,\end{aligned}$$

with

$$\begin{aligned} \varvec{\nabla }_{\mathrm {ce}} = \overbrace{{\text {diag}}\left[ -{\mathrm {i}}H,\ldots ,{\mathrm {i}}H\right] }^{\check{\varvec{\nabla }}_{\mathrm {ce}}} \otimes \varvec{I}_{n_f}\,.\end{aligned}$$
(2.66)

Herein, \({\text {diag}}\varvec{c}\) is a diagonal matrix with the elements of list \(\varvec{c}\) on the diagonal. Note that the Fourier transformers, \({\varvec{h}}(\tau )\), \({\varvec{E}}\), \({\varvec{\nabla }}\), \({\varvec{E}}^*\), \({\varvec{h}}^*(\tau )\) only depend on H, N, and \({n_f}\), but not on \(\varOmega \) or any other parameter.

Sine–Cosine Representation

Analogous to the complex-exponential representation, we can write the following:

$$\begin{aligned} \varvec{f}_H(t) = \underbrace{\overbrace{\left[ \begin{array}{cccccc} 1&\cos \left( \varOmega t\right)&\sin \left( \varOmega t\right)&\ldots&\cos \left( H\varOmega t\right)&\sin \left( H\varOmega t\right) \end{array}\right] }^{\check{\varvec{h}}_{\mathrm {sc},H}(\varOmega t)} \otimes \varvec{I}_{n_f}}_{\varvec{h}_{\mathrm {sc},H}(\varOmega t)} \underbrace{\left[ \begin{array}{c} \hat{\varvec{f}}(0) \\ \hat{\varvec{f}}_{\mathrm c}(1) \\ \hat{\varvec{f}}_{\mathrm s}(1) \\ \vdots \\ \hat{\varvec{f}}_{\mathrm c}(H) \\ \hat{\varvec{f}}_{\mathrm s}(H) \end{array}\right] }_{\hat{\varvec{f}}_{\mathrm {sc},H}}\,,\end{aligned}$$
(2.67)

and

$$\begin{aligned} \hat{\varvec{f}}_{\mathrm {sc},H} = \frac{1}{T} \int \limits _0^T ~\underbrace{\overbrace{\left[ \begin{array}{c} 1 \\ 2\cos \left( \varOmega t\right) \\ 2\sin \left( \varOmega t\right) \\ \vdots \\ 2\cos \left( H\varOmega t\right) \\ 2\sin \left( H\varOmega t\right) \end{array}\right] }^{\check{\varvec{h}}_{\mathrm {sc},H}^*(\varOmega t)} \otimes \varvec{I}_{n_f}}_{\varvec{h}_{\mathrm {sc},H}^*(\varOmega t)} ~ \varvec{f}(t) {\mathrm {d}}t \,.\end{aligned}$$
(2.68)

Similarly, we obtain

$$\begin{aligned} \tilde{\varvec{f}}_N \approx \underbrace{\left[ \begin{array}{cccc} 1 &{} \cos \left( \frac{2\pi (0)(1)}{N}\right) &{} \cdots &{} \sin \left( \frac{2\pi (0)(H)}{N}\right) \\ \vdots &{} \vdots &{} &{} \vdots \\ 1 &{} \cos \left( \frac{2\pi (N-1)(1)}{N}\right) &{} \cdots &{} \sin \left( \frac{2\pi (N-1)(H)}{N}\right) \end{array}\right] \otimes \varvec{I}_{n_f}}_{\varvec{E}_{\mathrm {sc},NH}} \left[ \begin{array}{c} \hat{\varvec{f}}(0) \\ \hat{\varvec{f}}_{\mathrm c}(1) \\ \vdots \\ \hat{\varvec{f}}_{\mathrm s}(H) \end{array}\right] \,, \end{aligned}$$
(2.69)

and

$$\begin{aligned} \hat{\varvec{f}}_{\mathrm {sc},H} \approx \underbrace{\frac{2}{N}\left[ \begin{array}{ccc} \frac{1}{2} &{} \cdots &{} \frac{1}{2} \\ \cos \left( \frac{2\pi (1)(0)}{N}\right) &{} \cdots &{} \cos \left( \frac{2\pi (1)(N-1)}{N}\right) \\ \vdots &{} &{} \vdots \\ \sin \left( \frac{2\pi (H)(0)}{N}\right) &{} \cdots &{} \sin \left( \frac{2\pi (H)(N-1)}{N}\right) \end{array}\right] \otimes \varvec{I}_{n_f}}_{\varvec{E}_{\mathrm {sc},HN}^*} \left[ \begin{array}{c} \tilde{\varvec{f}}(0) \\ \vdots \\ \tilde{\varvec{f}}(N-1)\end{array}\right] \,, \end{aligned}$$
(2.70)

where equality holds as discussed for the complex-exponential representation.

Finally, the first-order time derivative of a truncated Fourier series in sine–cosine representation reads as follows:

$$\begin{aligned}\dot{\varvec{f}}_{\mathrm {sc},H}&= \frac{{\mathrm {d}}}{{\mathrm {d}}t} \left( ~ \hat{\varvec{f}}(0) + \sum \limits _{k=1}^H \hat{\varvec{f}}_{\mathrm c}(k) \cos \left( k\varOmega t\right) + \hat{\varvec{f}}_{\mathrm s}(k) \sin \left( k\varOmega t\right) ~\right) \\&= \sum \limits _{k=1}^H k\varOmega \hat{\varvec{f}}_{\mathrm s}(k) \cos \left( k\varOmega t\right) - k\varOmega \hat{\varvec{f}}_{\mathrm c}(k) \sin \left( k\varOmega t\right) \\&= \varvec{h}_{\mathrm {sc},H}(\varOmega t) \varOmega \varvec{\nabla }_{\mathrm {sc}} \hat{\varvec{f}}_{\mathrm {sc},H}\,,\end{aligned}$$

with

$$\begin{aligned} \varvec{\nabla }_{\mathrm {sc}} = \overbrace{{\text {diag}}\left[ 0, \varvec{\nabla }_1, \ldots , \varvec{\nabla }_H\right] }^{\check{\varvec{\nabla }}_{\mathrm {sc}}}\otimes \varvec{I}_{n_f}\,,\quad \varvec{\nabla }_k = \left[ \begin{array}{rr} 0 &{} k~ \\ -k &{} 0~\end{array}\right] \,. \end{aligned}$$
(2.71)

Other Representations

Besides the already introduced representations, closely related alternatives exist. All of these are fully equivalent. It is a matter of convention, which of them is used. The only strict requirement is that the representation is used consistently and not mixed with other ones, without appropriate conversion. In the following paragraphs, we mention a few frequently used variants.

We ordered the vector \(\hat{\varvec{f}}_H\) such that Fourier coefficients to the same harmonic index k are together. Within a harmonic index, the coefficients are ordered just as the elements within the vector \(\varvec{f}(t)\) are ordered. Hence, the first \({n_f}\) elements of \(\hat{\varvec{f}}_H\) belong to the first harmonic index, and so on. An alternative is to collect all Fourier coefficients for the same element of \(\varvec{f}(t)\), and then stack these in a column vector. Then, the first \(2H+1\) elements of this new vector belong to the first element of \(\varvec{f}(t)\) and so on. The difference only shows itself in the multi-dimensional case, i.e., when \({n_f}>1\).

Attention

A wrongly assumed sorting is certainly a common source of programming errors.

In the complex-exponential formulation of the Discrete Fourier Transform, it is possible to use only positive indices. This can be most conveniently illustrated for the special case \(N=2H+1\). Note that

$$\begin{aligned} {\mathrm {e}}^{{\mathrm {i}}\frac{2\pi }{N}(-k)} = {\mathrm {e}}^{{\mathrm {i}}\frac{2\pi }{N}N}{\mathrm {e}}^{{\mathrm {i}}\frac{2\pi }{N}(-k)} = {\mathrm {e}}^{{\mathrm {i}}\frac{2\pi }{N}(N-k)} = {\mathrm {e}}^{{\mathrm {i}}\frac{2\pi }{N}(m)}\,.\end{aligned}$$
(2.72)

This defines a mapping from \(-k=-1,\ldots ,-H\) to \(m=N-1,\ldots ,N-H\). Here, we have \(N=2H+1\), and thus \(N-1=2H\) and \(N-H=H+1\). Hence, one can change the summation limits in the Fourier series from \(-H,\ldots ,H\) to \(0,\ldots ,N-1=2H\). In this modified representation, the first half of the vector \(\hat{\varvec{f}}_H\) (harmonic indices \(k=-H,\ldots ,-1\)) has to be flipped upside down and re-stacked to the end of the vector.

The factor 1 / N can be distributed arbitrarily between \(\varvec{E}_{NH}\) and \(\varvec{E}_{HN}^*\). The Fourier coefficients as well as the quantities \(\check{\varvec{h}}_H\) and \(\check{\varvec{h}}_H^*\) have to be scaled accordingly. A common choice is to use the factor \(1/\sqrt{N}\) for both. Then, \(\varvec{E}_{NH}\) and \(\varvec{E}_{HN}^*\) are conjugate transposes of each other. For \(N=2H+1\) they are also square. Due to the orthogonality property, the conjugate transpose of either matrix is then its inverse, the matrices are then called unitary. In this special case, and with the abovementioned change of the summation limits \(\check{\varvec{E}}_{NH}\) is commonly referred to as Fourier matrix or discrete Fourier transform matrix.

The sign in the argument of the complex exponentials can be inverted, as long as this is done both in the definition of the Fourier series and its coefficients. Similarly, in the sine–cosine representation, the order of the sine and cosine Fourier coefficients can be exchanged.

Finally, a common notation of a Fourier series is

$$\begin{aligned} \varvec{f}_H(t) =\mathfrak {R}\left\{ {\sum \limits _{k=0}^{H} \hat{\varvec{f}}^\dagger (k) {\mathrm {e}}^{{\mathrm {i}}k\varOmega t}}\right\} . \end{aligned}$$
(2.73)

Recalling that \(\hat{\varvec{f}}(-k)=\overline{\hat{\varvec{f}}(k)}\), we can easily identify

$$\begin{aligned} \hat{\varvec{f}}^\dagger (0)&= \hat{\varvec{f}}(0)\,,\end{aligned}$$
(2.74)
$$\begin{aligned} \hat{\varvec{f}}^\dagger (k)&= 2\hat{\varvec{f}}(k) \quad k=1,\ldots ,H\,. \end{aligned}$$
(2.75)

A particular advantage of the notation in Eq. (2.73) is that it avoids the redundancy among the Fourier coefficients \(\hat{\varvec{f}}(-k)\) and \(\hat{\varvec{f}}(k)\) in the complex-exponential representation. This representation is used in the computer tool NLvib, cf. Appendix C.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krack, M., Gross, J. (2019). Theory of Harmonic Balance. In: Harmonic Balance for Nonlinear Vibration Problems. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-14023-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14023-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14022-9

  • Online ISBN: 978-3-030-14023-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics